The Einstein Rosen bridge and the Einstein Podolsky Rosen paradox, ER and EPR: Wormhole and entanglement

The Einstein-Rosen Bridge and the Einstein Podolsky Rosen paradox. I demonstrate that the two-body problem in general relativity was a heuristic guide in Einstein’s and collaborators’1935 work on the Einstein-Rosen bridge and EPR paradox.

In 2013 Juan Maldacena and Leonard Susskind demonstrated that the Einstein Rosen bridge between two black holes is created by EPR-like correlations between the microstates of the two black holes. They call this the ER = EPR relation, a geometry–entanglement relationship: entangled particles are connected by a Schwarzschild wormhole. In other words, the ER bridge is a special kind of EPR correlation: Maldacena and Susskind’s conjecture was that these two concepts, ER and EPR, are related by more than a common publication date 1935. If any two particles are connected by entanglement, the physicists suggested, then they are effectively joined by a wormhole. And vice versa: the connection that physicists call a wormhole is equivalent to entanglement. They are different ways of describing the same underlying reality.

EPR

This image was published in a Nature article, Ron Cowen, “The quantum source of space-time”,  explaining the geometry–entanglement relationship and Maldacena’s and Susskind’s ER = EPR idea: Quantum entanglement is linked to a wormhole from general relativity. This representation is deterministic and embodies the many worlds interpretation: Collapse of the wave function never takes place. Instead, interactions cause subsystems to become entangled. Each measurement causes the branches of the tree to decohere; the quantum superposition being replaced by classical probabilities. The observer follows a trajectory through a tree. The entire tree, i.e., the entire wave function, must be retained and the universe is the complicated network of entanglements, branches of the tree: the wormhole bifurcating throats and mouths in the universe. See Susskind’s new paper from April 2016. Hence general relativity and quantum mechanics are linked by ER = EPR and Einstein’s soul can rest in peace because god will not play dice.

Maldacena and Susskind explain that one cannot use EPR correlations to send information faster than the speed of light.  Similarly, Einstein Rosen bridges do not allow us to send a signal from one asymptotic region to the other, at least when suitable positive energy conditions are obeyed. This is sometimes stated as saying that (Schwarzschild) Lorentzian wormholes are not traversable.

I uploaded a paper to the ArXiv: “Two-body problem in general relativity: A heuristic guide for the Einstein-Rosen bridge and EPR paradox”

In this paper I discuss the possible historical link between the 1935 Einstein-Rosen bridge paper and the 1935 Einstein-Rosen-Podolsky paper. The paper is a first version and I intend to upload a second version.

Between 1935 and 1936, Einstein was occupied with the Schwarzschild solution and the singularity within it while working in Princeton on the unified field theory and, with his assistant Nathan Rosen, on the theory of the Einstein-Rosen bridges. He was also occupied with quantum theory. He believed that quantum theory was an incomplete representation of real things. Together with Rosen and Boris Podolsky he invented the EPR paradox. In this paper I demonstrate that the two-body problem in general relativity was a heuristic guide in Einstein’s and collaborators’1935 work on the Einstein-Rosen bridge and EPR paradox.

In 1935 Einstein explained that one of the imperfections of the general theory of relativity was that as a field theory it was not complete in the following sense: it represented the motion of particles by the geodesic equation. A mass point moves on a geodesic line under the influence of a gravitational field. However, a complete field theory implements only fields and not the concepts of particle and motion. These must not exist independently of the field but must be treated as part of it. Einstein wanted to demonstrate that the field equations for empty space are sufficient to determine the motion of mass points. In 1935 Einstein attempted to present a satisfactory treatment that accomplishes a unification of gravitation and electromagnetism. For this unification Einstein and Rosen needed a description of a particle without singularity. In 1935, they joined two Schwarzschild solutions at the Schwarzschild limit and omitted part of the space-time beyond the Schwarzschild singularity. They showed that it was possible to do this in a natural way and they proposed the Einstein-Rosen bridge solution.

In the Einstein-Rosen bridges paper of 1935, Einstein negated the possibility that particles were represented as singularities of the gravitational field because of his polemic with Ludwig Silberstein. Silberstein thought he had demonstrated that general relativity was problematic. He constructed, for the vacuum field equations for the two-body problem, an exact static solution with two singularity points that lie on the line connecting these two points. The singularities were located at the positions of the mass centers of the two material bodies. Silberstein concluded that this solution was inadmissible physically and contradicted experience. According to his equations the two bodies in his solution were at rest and were not accelerated towards each other; these were nonallowed results and therefore Silberstein thought that Einstein’s field equations should be modified together with his general theory of relativity. Before submitting his results as a paper to the Physical Review, Silberstein communicated them to Einstein. This prompted Einstein’s remark, in his paper with Rosen in 1935, that matter particles could not be represented as singularities in the field.

Einstein and Rosen were trying to permanently dismiss the Schwarzschild singularity and adhere to the fundamental principle that singularities of the field are to be excluded. Einstein explained that one of the imperfections of the general theory of relativity was that as a field theory it was not complete because it represented the motion of particles by the geodesic equation. Einstein also searched for complete descriptions of physical conditions in quantum mechanics. It seems that the two-body problem in general relativity was a heuristic guide in the search of a solution to the problem that the psi function cannot be interpreted as a complete description of a physical condition of one system. He thus proposed the EPR paradox with Rosen and Podolsky.

Updated 2016

My new book on Einstein and the history of the general theory of relativity

Here is the dust jacket of my new scholarly book on the history of general relativity, to be released on… my Birthday:

General Relativity Conflict and Rivalries: Einstein’s polemics with Physicists.

Cover

The book is illustrated by me and discusses the history of general relativity, gravitational waves, relativistic cosmology and unified field theory between 1905 and 1955:

The development of general relativity (1905-1916), “low water mark” period and several results during the “renaissance of general relativity” (1960-1980).

Ein

Conversations I have had more than a decade ago with my PhD supervisor, the late Prof. Mara Beller (from the Hebrew University in Jerusalem), comprise major parts of the preface and the general setting of the book. However, the book presents the current state of research and many new findings in history of general relativity.

Ein2

My first book:

Einstein’s Pathway to the Special Theory of Relativity (April, 2015)

includes a wide variety of topics including also the early history of general relativity.

Einstein2

My new paper on Einstein and Schwarzschild

My new paper on General Relativity: Einstein and Schwarzschild.

Sometime in October 1915 Einstein dropped the Einstein-Grossman theory. Starting on November 4, 1915, Einstein gradually expanded the range of the covariance of his field equations. On November 11, 1915 Einstein was able to write the field equations of gravitation in a general covariant form, but there was a coordinate condition (there are no equations here so I cannot write it down here).

On November 18, 1915, Einstein presented to the Prussian Academy his paper, “Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”. Einstein reported in this talk that the perihelion motion of Mercury is explained by his theory. In this paper, Einstein tried to find approximate solutions to his November 11, 1915 field equations. He intended to obtain a solution, without considering the question whether or not the solution was the only possible unique solution.

Einstein’s field equations are non-linear partial differential equations of the second rank. This complicated system of equations cannot be solved in the general case, but can be solved in particular simple situations. The first to offer an exact solution to Einstein’s November 18, 1915 field equations was Karl Schwarzschild, the director of the Astrophysical Observatory in Potsdam. On December 22, 1915 Schwarzschild wrote Einstein from the Russian front. Schwarzschild set out to rework Einstein’s calculation in his November 18 1915 paper of the Mercury perihelion problem. He first responded to Einstein’s solution for the first order approximation from his November 18, 1915 paper, and found another first-order approximate solution. Schwarzschild told Einstein that the problem would be then physically undetermined if there were a few approximate solutions. Subsequently, Schwarzschild presented a complete solution. He said he realized that there was only one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18 1915 paper.

“Raffiniert ist der Herrgott, aber boshaft ist er nicht” (Einstein might have already said….), because the problem with Schwarzschild’s line element was that a mathematical singularity was seen to occur at the origin! Oh my, Einstein abhorred singularities.

Actually, Schwarzschild “committed another crime”: he did not satisfy the coordinate condition from Einstein’s November 11 or November 18, 1915 paper. Schwarzschild admitted that his coordinates were not “allowed” coordinates, with which the field equations could be formed, because these spherical coordinates did not have determinant 1. Schwarzschild chose then the non-“allowed” coordinates, and in addition, a mathematical singularity was seen to occur in his solution. But Schwarzschild told Einstein: Don’t worry, “The equation of [Mercury’s] orbit remains exactly as you obtained in the first approximation”! See my paper from 2012.

Einstein replied to Schwarzschild on December 29, 1915 and told him that his calculation proving uniqueness proof for the problem is very interesting. “I hope you publish the idea soon! I would not have thought that the strict treatment of the point- problem was so simple”. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his solution of Einstein’s November 18, 1915 field equations for the field of a single mass. Einstein received the manuscript by the beginning of January 1916, and he examined it “with great interest”. He told Schwarzschild that he “did not expect that one could formulate so easily the rigorous solution to the problem”. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy with a few words of explanation. Schwarzschild’s paper, “On the Gravitational Field of a Point-Mass according to Einstein’s Theory” was published a month later.

untitled

Karl Schwarzschild

In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity, “The Foundation of the General Theory of Relativity”. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Even so, in his 1916 paper, Einstein preferred NOT to base himself on Schwarzschild’s exact solution, and he returned to his first order approximate solution from his November 18, 1915 paper.

A comment regarding Einstein’s calculations in his November 18, 1915 paper of the Mercury perihelion problem and Einstein’s 1916 paper. In his early works on GTR, in order to obtain the Newtonian results, Einstein used the special relativistic limit and the weak field approximation, and assumed that space was flat (see my paper). Already in 1914 Einstein had reasoned that in the general case, the gravitational field was characterized by ten space-time functions of the metric tensor. g were functions of the coordinates. In the case of special relativity this reduces to g44 = c2, where c denotes a constant. Einstein took for granted that the same degeneration occurs in the static gravitational field, except that in the latter case, this reduces to a single potential, where g44 = c2 is a function of spatial coordinates, x1, x2, x3. 

Later that year David Hilbert (with a vengeance from 1915?…) arrived at a line-element similar to Schwarzschild’s one, and he concluded that the singularity disappears only if we accept a world without electricity. Such an empty space was inacceptable by Einstein who was apparently much attracted by Mach’s ideas! (later termed by Einstein “Mach’s Principle”). Okay, Einstein, said Hilbert: If there is matter then another singularity exists, or as Hilbert puts it: “there are places where the metric proves to be irregular”…. (See my paper from 2012).

einstein405

 

Picture2

Picture1

1800254_10152774487603630_1455450272073337672_n[1]

 

10701981_10152774492093630_9206274613365583944_n[1]

Strange Days at Blake Holsey High: a student is sucked into the black hole…