אודיסאת איינשטיין ליחסות הכללית Einstein’s Odyssey to General Relativity

מאמר שלי על דרכו של איינשטיין לתורת היחסות הכללית: אודיסאת איינשטיין ליחסות הכללית

סיינטיפיק אמריקן ישראל

“Einstein’s Odyssey to General Relativity”, Scientific American Israel

את המונח “אודיסאה” ליחסות הכללית טבע פרופ’ ג’ון סטצ’ל מאוניברסיטת בוסטון והוא מייצג את המסע המפרך של איינשטיין בדרכו ליחסות הכללית. ראו המאמר של סטצ’ל למטה

Odyssey to general relativity is John Stachel’s memorable phraseology. See:

Stachel, John (1979). “Einstein’s Odyssey: His Journey from Special to General Relativity”. In Einstein from B to Z, 2002.

I am sorry but this piece is in Hebrew. You can read my book General Relativity Conflict and Rivalries, my papers on Einstein and general relativity and a short summary below.

Picture1

מפייסבוק: מארחים את ד”ר גלי וינשטיין לדבר על איינשטיין

SF1

My drawing of Einstein:      האיור שלי של איינשטיין

איינשטיין צעיר

And the original (I tried as hard as I could to draw a young Einstein…):       המקור

תמונה1

The article discusses the following topics:

1907. The Happiest thought of my life.

3

1907-1911. The equivalence principle and elevator experiments.

4

1911. Deflection of light and explaining deflection of light using an elevator thought experiment.

5

1911-1912 (1916). The disk thought experiment, gravitational time dilation and gravitational redshift.

6

1912. The disk thought experiment and non-Euclidean geometry.

7

1912. Einstein to Marcel Grossmann: “Grossmann, you must help me or else I’ll go crazy!”. Grossmann searched the literature, and brought the works of Bernhard Riemann, Gregorio Curbastro-Ricci, Tullio Levi-Civita and Elwin Bruno Christoffel to Einstein’s attention. With Grossmann’s help Einstein searched for gravitational field equations for the metric tensor in the Zurich Notebook.

8

1913-1914. The Entwurf theory. In 1913, Einstein and Michele Besso both tried to solve the new Entwurf field equations to find the perihelion advance of Mercury.

2October 1915. Einstein realizes there are problems with his 1914 Entwurf theory. November 1915. Einstein’s competition with David Hilbert.

1

November 1915. Four ground-breaking papers: Einstein presents the field equations of general relativity, finds the advance of the perihelion of Mercury and predicts that a ray of light passing near the Sun would undergo a deflection of amount 1.7 arc seconds.

Advertisements

My work has been plagiarized at the Century of General Relativity conference

conference Berlin

You often think that if your papers and books are good, conferences all around the world will invite you to present them. How can you measure how influential your work is? The answer is simple: The more your papers are interesting, the greater the odds become you will not be invited to conferences, and your papers will be plagiarized at a conference by a professor extraordinarius. He will present your work as his own and use your ideas without mentioning your name in his conference speech. Can you imagine your reaction to later hearing his lecture on the web site of the Max Planck Institute for the History of Science in Berlin? “Oh my, these are my words! This cannot be true!” The organizers of the Berlin Century of General Relativity and MPIWG conference  failed to invite me to lecture at this international conference to celebrate 100 years of general relativity, a conference I should have gone to. But it turns out that my work on Einstein is so influential that professor Hanoch Gutfreund from the Hebrew University of Jerusalem gave the main or plenary evening lecture at the Century of General Relativity conference, “100 years of General Relativity – What are we Celebrating?”, and he made use in his lecture of passages I wrote two and four years ago and failed to mention my name. He has plagiarized content from my papers for his lecture. “O human race, born to fly upward, wherefore at a little wind dost thou so fall?” Dante Alighieri. I always felt there was something special in my papers because 10,000 people have downloaded my work. However, I don’t exactly feel flattered. I’m grossed out! I am completely disappointed. People have their head in the sand when my work is plagiarized in a big conference.

רן

קוראים 10000

The comparison between the original, my work, and citations from Prof. Gutfreund’s talk will speak for itself.

ג2

Professor Hanoch Gutfreund’s lecture presented Einstein’s road to general relativity (the genesis of general relativity) and the formative years of general relativity (a term coined by Prof. Gutfreund and Prof. Jürgen Renn). Six times he lifted ideas, phrases and lines from my work.

1. Einstein does not use the Schwarzschild Solution in his 1916 Review Paper.

Professor Gutfreund speaks about things Einstein could have done: “He could have done it… we know that he could have done it”. In this respect he mentions Einstein and the Schwarzschild solution:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

ג3

ג4

It seems Prof. Gutfreund have picked the above passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild

Einstein’s 1916 Equations:

Schwartz1

Schwartz2

Schwartz3

In addition, the above passage from prof. Gutfreund’s speech had been previously explained in great detail in my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, published in 2014. A year before Prof. Gutfreund’s lecture at the Century of General Relativity conference in Berlin, I wrote in the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv: 1411.7370v [physics.hist-ph], 26 Nov, 2014:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

I demonstrate in my paper that in his 1916 review paper, “The Foundation of the General Theory of Relativity”, Einstein used Huygens principle and the first order approximate solution to his vacuum field equations from the November 18, 1915 perihelion of Mercury paper to derive bending of light, the deflection of a ray of light passing by the sun. I end my paper by saying: “Einstein ended his paper with the final equation from his November 18 paper, the equation for the perihelion advance of Mercury in the sense of motion after a complete orbit. And he only mentioned in a footnote, ‘With respect to the calculation, I refer to the original treatments’: Einstein’s November 18 paper and Schwarzschild’s 1916 paper”. Here are two paragraphs from my own paper:

שוורצשילד1

שוורצשילד2

I wrote above: “In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity, “The Foundation of the General Theory of Relativity”. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution (8) to Einstein’s November 18, 1915 field equations. Even so, in his 1916 paper, Einstein preferred not to base himself on Schwarzschild’s exact solution… and he returned to his first order approximate solution (6) from his November 18, 1915 paper”.

ג1

Einstein preferred in his 1916 review paper to write his November 18, 1915 approximate solution upon the Schwarzschild exact solution because he objected to the “Schwarzschild singularity”. Einstein repeatedly spoke against the Schwarzschild singularity and stated the impossibility of the Schwarzschild singularity.

2. Einstein and the Riemann tensor.

In his talk Professor Gutfreund concentrated on Einstein’s mistakes. In describing Einstein’s mistakes prof. Gutfreund said:

“The Riemann tensor is not a tensor of curvature. There is no affine connection. There is no parallel transport, all that, all the geometrization that is the trademark of the whole theory, that was not a presupposition that led him to the final results. He could have done it, maybe in another step. How could we know that he could have done it?

In 1914 he wrote another review article that was the review article of the Entwurf theory, a long article, he wrote it when he was confident that this was the correct theory; and there where he gets to the point where he has to explain covariant differentiation, he makes a remark: I know that Levi-Civita told us how to do it this way, but I prefer to do it differently, and this differently is abominable. I can tell you. If you look at the text how it is done, and when he did his 1916 review [article] he followed almost word by word except in that chapter where the new Lagrangian has to appear, except there he followed exactly what he did, so he could have done it”.

ג6

To begin with, this explanation combines two unrelated elements. The second part of the above passage seems to represent incorrectly a paragraph from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916”, ArXiv: 1201.5353v1 [physics.hist-ph], 25 January, 2012. In 2012 I sent this paper to prof. Gutfreund.

The opening remarks of my paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916” (pp. 1-2), deal with Einstein’s 1914 review article and the comment he later made. Einstein had published a comprehensive review article dealing with his Entwurf  theory. On page 1041, he presented the Ricci tensor. On pages 1042 he found a problem with the Ricci tensor. Evidently he did not yet realize that the solution was to restrict himself to unimodular transformations. On page 1053 he presented the Riemann-Christoffel tensor. He did not use this tensor in his 1914 Entwurf field equations. That was the reason why the presentation of this tensor in 1914 was very brief. Of course the reason was also page 1041. In his first talk on the general theory of relativity (November 4, 2015), Einstein postulated that only unimodular transformations were allowed. This solved the problem with the 1914 Ricci tensor (page 1041). He wrote the Riemann-Christoffel tensor, obtained the Ricci tensor G and a gravitational tensor R. The field equations were restricted to unimodular transformations. He then wrote the following remark: the Ricci and Levi-Civita fundamental tensor of page 1041 could be written in a different form, it could be obtained from the Riemann-Christoffel tensor. He explained that he had given this proof in his 1914 paper on page 1053 and had followed this root in 1912 in the Zurich Notebook. Hence, Einstein made the remark (comment) – not in the 1914 Entwurf paper – but rather in the November 4, 1915 paper; and the remark referred to the field equations formulated in a non-Lagrangian form. I explain this in my 2012 paper:

2012-1

2012-2

The first part of Prof. Gutfreund’s explanation represents Prof. John Stachel’s memorable phraseology, the importance of “the affine connection”. Prof. Stachel explains that until 1912, Einstein lacked the Riemanian geometry and the tensor calculus as developed by the turn of the century, i.e., based on the concept of the metric tensor; and after 1912 when he was using these, he then lacked more advanced mathematical tools (the affine connection); these could be later responsible for inhibiting him for another few years. Judged from the historical point of view of his time, Einstein did not make a mistake, because he lacked the appropriate mathematical tools. Actually with hindsight the story is more complicated. What was eventually mere coincidence for Einstein would later turn to be a consequence derived by new mathematical tools, the affine connection, which was invented after Einstein had arrived at generally covariant field equations. (See Stachel, John, Einstein from ‘B’ to ‘Z’, 265, 304-306.

The above explanation is from my paper: “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, ArXiv: 1202.2791v1 [physics.hist-ph], 13 February, 2012, p. 20):

stachel

Finally, following the November 4, 1915 field equations, Einstein wrote the 1914 Entwurf Lagrangian and adjusted in 1915 and in 1916 his Entwurf 1914 variational formalism. In section 12 of the 1916 review article, Einstein started from the 1914 equations he had written on page 1053, he contracted the Riemann-Christoffel tensor and obtained the Ricci tensor and the field equations in unimodular coordinates; he also wrote the field equations in Lagrangian form.

In my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012, I pinpoint the differences and similarities between Einstein’s first 1914 review paper and second 1916 review paper, “The Foundation of the General Theory of Relativity”. I discuss the differences and similarities among Einstein’s 1914 and 1916 formulations and Einstein’s 1916 manuscript “The Foundation of the General Theory of Relativity” and 1916 review paper, “The Foundation of the General Theory of Relativity”.

3. Friedmann’s model and Einstein’s reaction to it.

Towards the end of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund lifted phrases from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, ArXiv: 1309.6590v [physics.hist-ph], 26 Sep. 2013.

In 1922, Alexander Friedman published a model of an expanding universe. Einstein was not satisfied with this model and replied by a note; he thought he found a mistake in Friedmann’s results, which when corrected Friedmann’s solution would give Einstein’s good old static model. Friedmann sent Einstein his calculations and asked him to publish a correction to his statement. Einstein was willing to correct the slip in his previous note. Prof. John Stachel discovered that in the draft to the note to the editor Einstein wrote something quite different.

Prof. Gutfreund explained in his lecture:

“But here we have you see the letter, the letter to the editor, the angry letter. You see the last sentence is crossed out. So I will tell you what is it the last sentence. The last sentence says ‘It follows that the field equations, besides the static solution’, there are such static solution and so on. But then what is crossed out is ‘but a physical significance can hardly be attributed to them’.”.

And Professor Gutfreund showed the following slide:

“It follows that the field equations, besides the static solutions, permit dynamic (that is varying with time coordinates) spherically symmetric solutions for the spatial structure. He added the words: ‘but a physical significance can hardly be ascribed to them’, which he crossed out before sending the note to the editor”.

snake3

I see phrases here that come from my work and Prof. Stachels’ bookEinstein from B to Z, 2002, for which there is no attribution. I recognize my own words: “but a physical significance can hardly be ascribed to them”.

Prof. Stachel wrote: “to which a physical significance can hardly be ascribed”. Hence, prof. Gutfreund did not even bother to read prof. Stachel’s original paper; he simply lifted phrases from my paper. His above citation and slide contain exact words from my own published paper but he does not give attribution to me. I wrote in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” the following:

פרידמן

snake

Therefore, in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote the following (pp. 39-40):

“Einstein was willing to correct the slip in his previous note: ‘In my previous note I have criticized the cited work [Friedmann’s 1922 work, ‘On the curvature of Space’], but my objection, as I became convinced by Friedmann’s letter communicated to me by Mr. Krutkov, rested on an error in my calculations. I consider that Mr. Friedmann’s results are correct and shed new light. It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure’. 126

Endnote 126 sends the reader to Einstein’s original paper in German and to the following reference: Tropp, Eduard A., Frenkel, Viktor Ya. and Chernin, Artur D., Alexander A Friedmann: The Man who Made the Universe Expand, Cambridge: Cambridge University Press, 1993. In this book one finds a translation of the relevant paragraph of Einstein’s paper into English:

snake1

However, in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I have changed this translation. For instance I make a mistake and write: “In my previous note I have criticized”… Prof. Gutfreund reproduces my awkward translation and not the above translation.

In fact, Einstein was little impressed by Friedmann’s mathematical models. In Einstein’s draft of the second note to the Zeitschrift für Physik, in which he withdrew his earlier objection to Friedmann’s dynamical solutions to the field equations, he crossed-out the final last section of the sentence, ‘a physical significance can hardly be ascribed to them’, before sending the note to the editor of the Zeitschrift für Physik, thus Einstein originally wrote in the draft: ‘It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, but a physical significance can hardly be ascribed to them’.127”.

I placed the endnotes at the end of my paper. Footnotes and endnotes are a bother to read and are rarely read. People abstain from reading endnotes. However, endnote 126 refers to Einstein’s (German) paper and to the above said translation and endnote 127 in the above passage refers to the paragraph from Prof. Stachel’s paper, “Eddington and Einstein”, Einstein from ‘B’ to ‘Z’, p. 469:

Friedmann

Prof. Stachel writes:

“Friedmann’s paper came to Einstein’s attention. He thought he had found a mathematical flow in Friedmann’s argument, and said so in print. When he became convinced that the error was his not Friedmann’s, he retracted his mathematical objection, but stuck to his static cosmological model. How little impressed he was by Friedmann’s models can be seen from the final clause of his draft retraction, which (fortunately for him) Einstein deleted before it was printed:

It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, [to which a physical significance can hardly be ascribed.],

The bracketed portion being crossed out in the manuscript”.

Compare prof. Gutfreund’s slide to the passage from my 2013 paper. Professor Gutfreund uses my phrases verbatim in his slide with no citation:

גוטפרוינד

Surely prof. Gutfreund did not read my endnote 127, otherwise he would have mentioned prof. John Stachel’s paper in his lecture, because when there is acknowledgment in prof. Gutfreund’s talk, the impression is of a wholesale attribution to prof. Jürgen Renn and other notable Einstein scholars. This is far from being the only sources for professor Gutfreund’s lecture. Indeed, in his lecture he mentions prof. John Stachel’s paper on Hilbert’s competition with Einstein (priority dispute) written with prof. Jürgen Renn and prof. Leo Corry, while discussing Einstein’s competition with David Hilbert:

“He was concerned that he will be outrun, and was concerned that he will be outrun by David Hilbert; and the question is who gets there first. Now had Einstein read the article by Jürgen Renn, and John Stachel and Leo Corry, he wouldn’t have to worry”.

Hilbert2 4. Demarcation between “Mach’s idea” and ‘Mach’s principle”

After presenting the genesis of general relativity, prof. Gutfreund briefly reviewed Mach’s principle. Here I highlight what I see as plagiarized demarcation between “Mach’s idea” and “Mach’s principle”. This demarcation is found in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” and in my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”. I also briefly discuss this matter in my first book, Einstein’s Pathway to the Special Theory of Relativity.

In his lecture Prof. Gutfreund explained:

“So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. Now at the outset I want to tell you that everything that Einstein did in those years in this context and in other until 1929, and maybe over, it was a little longer, was to defend his strong belief in Mach’s criticism of Newton. Mach’s criticism, I mean there is no absolute space, all inertial effects are due to all the masses in the universe, there is no inertia, except determined by all the masses of the universe. This is Mach’s idea. I am not calling it a principle yet. This is Mach’s idea ….”

When prof. Gutfreund explained the difference between Mach’s idea and Mach’s principle, he raised his hand and pointed his finger to the audience:

finger

Mach3

Professor Gutfreund then spoke about Einstein’s exchange of letters with de Sitter, Felix Klein and Hermann Weyl and said:

“And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”.

And he showed the following slide:

Mach's ideas

In my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I demarcated between “Mach’s ideas” and “Mach’s Principle”:

Mach's idea

I Therefore write:

“Einstein desired to eliminate what he called the “epistemological weakness” [“erkenntnistheoretischen Schwächen”] of Newtonian mechanics, the absolute space, from physics; he invented a world, finite and spatially closed static universe, bounded in space, according to the idea of inertia having its origin in an interaction between the mass under consideration and all of the other masses in the universe, which he called “Mach’s ideas” (obviously not Ernst Mach’s ideas as has been generally recognized and as Mach himself pronounced them). This would be later called by Einstein “Mach’s principle” (more precisely Mach-Einstein principle)”.

In my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, I explain on page 22 the difference between “Mach’s idea” and Mach’s principle”:

Mach2

I therefore write:

“Einstein ended section §1 with the conclusion that the momentum and kinetic energy are inversely proportional to c. Or, the inertial mass is m/c and independent of the gravitational potential.116 This conforms to Mach’s idea that inertia has its origin in an interaction between the mass point under consideration and all of the other mass points. Einstein explained that if other masses are accumulated in the vicinity of the mass point, the gravitational potential c decreases. And then the quantity m/c increases which is equal to the inertial mass. In the static fields theory Einstein presented the predecessor to Mach’s principle.117“.

In my book, Einstein’s Pathway to the Special Theory of Relativity I again say:

Machbook

Prof Gutfreund says: “So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. … And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”. And he presents the above slide.

In my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” I wrote the following:

Mach's ideas3.jpg 5. Besso as Einstein’s Sounding Board

Quite at the beginning of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund borrowed passages from my 2012 paper, “Albert Einstein’s Methodology”. Prof Gutfreund said in his lecture:

“Einstein with his very good friend usually a sounding board, in this case, a collaborator, in this case when they worked together. Usually he was Einstein’s sounding board. They wrote… the Einstein-Besso manuscript… and in that document they calculated the perihelion motion”.

Besso3

My own words in “Albert Einstein’s Methodology” are:

Besso0

 

Besso1

The Philosophy of Science Portal added a link to my paper, “Albert Einstein’s Methodology”.

Hence, in my 2012 paper, “Albert Einstein’s Methodology”, ArXiv: 1209.5181v1 [physics.hist-ph], 25 September, 2012, I write:

“Later in 1913 Besso came to Zurich and actively participated in solving the Einstein-Grossman (‘Entwurf’) gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of the perihelion of Mercury. The young Einstein may have considered Besso as his sounding board, but was Besso still Einstein’s sounding board in 1913?”

I explain in my paper that in 1913, Besso still functioned as Einstein’s sounding board while they were both working on the Einstein-Besso manuscript:

“Indeed when Einstein wrote Besso a series of letters between 1913 and 1916, and described to him step by step his discoveries of General Relativity, Besso indeed functioned again as the good old sounding board as before 1905”.

I also wrote about Besso in my book, Einstein’s Pathway to the Special Theory of Relativity, April 2015:

Besso

Therefore, in my book, Einstein’s Pathway to the Special Theory of Relativity (Newcastle, UK: Cambridge Scholars Publishing), April 2015, I have dedicated a whole chapter to Einstein’s “sounding boards”. In the section explaining Michele Besso’s role as Einstein’s sounding board I write:

“Even in 1913, Besso was still Einstein’s sounding board. In June 1913, Besso visited Einstein in Zurich and actively participated in solving the Einstein-Grossmann Entwurf gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of mercury’s perihelion in the field of a static sun. Their join work is known as the Einstein-Besso manuscript”.

Prof. John Stachel was the first to show that Michele Besso acted as Einstein’s sounding board. The need to put ideas into communicable form led Einstein to search throughout his early life for people to act as sounding boards for his ideas. See his book: Einstein’s Miraculous Year. Five Papers that Changed the Face of Physics (Princeton: Princeton University Press). Following discussions with prof. Stachel I have extended his ideas into the above expression.

I really hoped that some conference would ask me to give a talk about my work, “Albert Einstein’s Methodology”. I thought I had a philosophical paper worth talking about at a conference. Obviously, now that prof. Gutfreund lifted my unique expression of prof. Stachel’s idea of sounding boards from this paper there is no point presenting it at a conference.

6. Cosmological Constant Biggest blunder

A thread that runs through Professor Gutfreund’s entire talk is that Einstein had made many mistakes on his road to general relativity and cosmological model. Towards the end of his talk prof. Gutfreund mentions Einstein’s biggest mistake:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

In prof. Gutfreund’s book with prof. Jürgen Renn, The Road to Relativity, prof. Gutfreund further explains this:

cosmo

notes

Compare the above paragraph from prof. Gutfreund’s book The Road to Relativity to the abstract of my 2013 paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013:

gamow

gamow2

And compare the penultimate paragraph from prof. Gutfreund’s book The Road to Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized the abstract of my paper, received the citations. Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016:

“An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

cite

Gamow

cheers

The audience of prof. Gutfreund’s lecture, “100 Years of General Relativity – What Are We Celebrating?”, consisted of top experts and known professors in my field. They clapped and cheered when he finished to speak. They seemed to like his lecture. I wish they knew that parts of professor Hanoch Gutfreund’s lecture were based on my papers and I worked so hard to write them.

7. David Hume and Ernst Mach’s influence on Einstein

At the Thursday round table speech Prof. Gutfreund seems to also lifted something from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”. At the Berlin MPIWG conference round table discussion about general relativity, professor Gutfreund explained:

“But then in his [Einstein’s] Autobiographical Notes his most, I mean this is for the philosophers of science here, may be his most blant [blatant], most explicit departure from empiricism, you know until almost end he always mentions Mach together with Hume. The two of them who showed him the way to general relativity. I quote”.

manspla

“I mean this is for the philosophers of science here”, Prof. Gutfreund said while pointing to where the philosopher of science prof. Yemima Ben Menahem was sitting.

Mach and HUme

It is fairly obvious that the explanation about Hume and Mach showing Einstein the way to general relativity was either lifted from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” or from my book, Einstein’s Pathway to the Special Theory of Relativity.

Hume and Mach showing Einstein the way to general relativity is a mistake in my 2013 paper which prof. Gutfreund seems to have reproduced in his round table discussion. Actually, in 1949 Einstein explicitly expressed in his Autobiographical Notes an intellectual debt to Hume and Mach’s philosophical writings in his discovery of special relativity. However, in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote about Hume’s influence on the elder Einstein and I said that Hume’s influence on Einstein was greater than Mach’s ideas (general relativity and cosmology):

Hume

I thus write:

“The elder Einstein could not remember how far Mach’s writings have influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the general theory of relativity. Indeed the elder Einstein often wrote that the influence of David Hume was greater on him. Finally, a year before his death Einstein silently dropped Mach’s principle in itself”.

The philosophy of Hume and Mach had an important influence on Einstein’s development and discovery of special relativity. Mach’s ideas about the relativity of inertia influenced Einstein on his road to general relativity. If Professor Gutfreund “quotes”, then I shall quote as well. Einstein writes in his Autobiographical Notes (1949, p. 53):

Einst

“One sees that in this paradox [of Einstein chasing a light beam] the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, or of simultaneity, was rooted unrecognized in the unconscious. To recognize clearly this axiom and its arbitrary character already implies the essentials of the solution of the problem. The type of critical reasoning required for the discovery of this central point was decisively furthered, in my case, especially by the reading of David Hume’s and Ernst Mach’s philosophical writings”.

However, in my first book, Einstein’s Pathway to the Special Theory of Relativity, on page 292, I tried to correct my mistake in my 2013 paper, and I combined the influence of David Hume’s and Ernst Mach’s philosophy on Einstein with Mach’s ideas and Mach’s principle:

Mach's principle

I therefore write in my book:

“The older Einstein could not remember how far Mach’s writings influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the theory of relativity. Indeed, the older Einstein often wrote that David Hume was a greater influence on him. We should remember that in 1948 Einstein saw Mach’s weakness in his belief more or less that science consists in the mere “ordering” of empirical material. Mach, according to Einstein, misjudged the free constructive element in the formation of concepts. He believed that in some sense theories arise by discovery and not invention (Einstein to Besso, January 6, 1948, Einstein and Besso 1971, Letter 153; see Section 1.1). Finally, a year before his death, Einstein silently dropped Mach’s principle in itself…”.

Prof. Gutfreund seems to have combined in his round table discussion my mistake from 2013 and the above so-called correction.

8. Einstein and Poincare.

Finally, it is not the first time that prof. Gutfreund has endorsed my ideas and presented them as his own. In August 2015, at the World Science Conference – Israel (WSCI), young students from all around the world and 15 Nobel laureates were invited to the WSCI conference. Prof. Gutfreund was part of a panel discussion at the WSCI conference on “Eureka moment!”. He happened to be sitting next to Nobel Laureates prof. Arieh Warshel, prof. Harold Kroto and prof. Sidney Altman. Later the Lectures and panels were uploaded to the website of the homepage of the WSCI conference.

I heard prof. Gutfreund speaking about Einstein’s 1916 interview (“exchange of readers” [letters]) with Max Wertheimer. He told the audience about Einstein describing to Wertheimer how the theory of general relativity occurred to him. Actually Wertheimer discussed with Einstein the development of his special theory of relativity and not the genesis of general relativity and the road to general relativity. Prof. Gutfreund spoke about Einstein’s creativity and Poincaré’s creativity and his Eureka moment, something he had read in my book, Einstein’s Pathway to the Special Theory of Relativity. He told the story of Poincaré who could not find the solution to his problem. Poincaré then took part in an excursion. The events of the trip made him forget his mathematical work. He entered a bus; the moment he put his foot on the step, the idea came to him, without anything in his former thoughts seeming to have prepared him for it.

פואנקרה5

Prof. Gutfreund told the audience the following, here is the citation from his lecture:

“Einstein had a very close friendly relationship with Max Wertheimer. Max Wertheimer is one of the founding fathers of gestalt psychology, and they exchanged readers [letters]. Max Wertheimer even wrote a book about creativity and they explored this idea of creativity and debation [debated] time, and then this ha-moment according, so I mean the classical example of an ha-moment again according to his, to Einstein’s testimony is this happiest thought in retrospect. There is another ha-moment, because you see, a ha-moment and Eureka does not have always to be something which turns out to be correct. Einstein had an ha-moment in something which turned out completely wrong at the end, that is something I refer to, one day he writes to Lorentz and this I have a theory which is a dark spot there and the next day he writes I am now completely satisfied that this is true. But that was completely wrong. But the person who really discussed it is another physicist, a polyglot of science and that is Poincaré, and Poincaré describes an ha-moment he was troubling with his idea whether it should be Lobachevski’s geometry, this kind of geometry, Euclidean geometry, and suddenly he gets on a bus and he describes the moment when he puts his foot on the step of the bus and suddenly it all comes to him and he runs home and writes it all. So you don’t have to run naked in the streets in an ha-moment. There are all kind of…”.

Compare this to the following several paragraphs from my own book, Einstein’s Pathway to the Special Theory of Relativity, April 2015. Prof. Gutfreund has lifted the Einstein-Wertheimer-creativity-Poincaré bus story discussion from my own book:

פואנקרה3

פואנקרה

פואנקרה2

 

פואנקרה4

Fools had ne’er less wit in a year, For wise men are grown foppish. They know not how their wits to wear, Their manners are so apish. King Lear, Act 1, scene 4.

FIN

 

 

 

 

 

 

 

My new book on Einstein and the history of the general theory of relativity

Here is the dust jacket of my new scholarly book on the history of general relativity, to be released on… my Birthday:

General Relativity Conflict and Rivalries: Einstein’s polemics with Physicists.

Cover

The book is illustrated by me and discusses the history of general relativity, gravitational waves, relativistic cosmology and unified field theory between 1905 and 1955:

The development of general relativity (1905-1916), “low water mark” period and several results during the “renaissance of general relativity” (1960-1980).

Ein

Conversations I have had more than a decade ago with my PhD supervisor, the late Prof. Mara Beller (from the Hebrew University in Jerusalem), comprise major parts of the preface and the general setting of the book. However, the book presents the current state of research and many new findings in history of general relativity.

Ein2

My first book:

Einstein’s Pathway to the Special Theory of Relativity (April, 2015)

includes a wide variety of topics including also the early history of general relativity.

Einstein2

Review of Arch and Scaffold Physics Today

Arch and scaffold: How Einstein found his field equations” by Michel Janssen and Jürgen Renn. Physics Today 68(11), 30 (2015). The article is published in November 2015, which marks the centenary of the Einstein field equations. (Renn co-authored with Gutfreund The Road to Relativity, Princeton Press)

This is a very good article. However, I would like to comment on several historical interpretations. . Michel Janssen and Jürgen Renn ask: Why did Einstein reject the field equations of the first November paper (scholars call them the “November tensor”) when he and Marcel Grossmann first considered them in 1912–13 in the Zurich notebook?

They offer the following explanation: In 1912 Albert Einstein gave up the November tensor (derived from the Ricci tensor) because the rotation metric (metric of Minkowski spacetime in rotating coordinates) did not satisfy the Hertz restriction (the vanishing of the four-divergence of the metric). Einstein wanted the rotation metric to be a solution of the field equations in the absence of matter (vacuum field equations) so that he could interpret the inertial forces in a rotating frame of reference as gravitational forces (i.e. so that the equivalence principle would be fulfilled in his theory).

However, the above question – why did Einstein reject the November tensor in 1912-1913, only to come back to it in November 1915 – apparently has several answers. It also seems that the answer is Einstein’s inability to properly take the Newtonian limit.

Einstein’s 1912 earlier work on static gravitational fields (in Prague) led him to conclude that in the weak-field approximation, the spatial metric of a static gravitational field must be flat. This statement appears to have led him to reject the Ricci tensor, and fall into the trap of Entwurf limited generally covariant field equations. Or as Einstein later put it, he abandoned the generally covariant field equations with heavy heart and began to search for non-generally covariant field equations. Einstein thought that the Ricci tensor should reduce in the limit to his static gravitational field theory from 1912 and then to the Newtonian limit, if the static spatial metric is flat. This prevented the Ricci tensor from representing the gravitational potential of any distribution of matter, static or otherwise. Later in the 1920s, it was demonstrated that the spatial metric can go to a flat Newtonian limit, while the Newtonian connection remains non-flat without violating the compatibility conditions between metric and (affine) connection (See John Stachel).

PT_3_2979_figures_online_f1

Phys. Today 68, 11, 30 (2015).

As to the “archs and scaffolds” metaphor. Michel Janssen and Jürgen Renn demonstrate that the Lagrangian for the Entwurf field equations has the same structure as the Lagrangian for the source-free Maxwell equations: It is essentially the square of the gravitational field, defined as minus the gradient of the metric. Since the metric plays the role of the gravitational potential in the theory, it was only natural to define the gravitational field as minus its gradient. This is part of the Entwurf scaffold. The authors emphasize the analogy between gravity and electromagnetism, on which Einstein relied so heavily in his work on the Entwurf theory.

However, I am not sure whether in 1912-1913 Einstein was absolutely aware of this formal analogy when developing the Entwurf field equations. He first found the Entwurf equations, starting from energy-momentum considerations, and then this analogy (regarding the Lagrangian) lent support to his Entwurf field equations. Anyway, I don’t think that this metaphor (analogy between gravity and electromagnetism) persisted beyond 1914. Of course Einstein came back to electrodynamics-gravity, but I think that he discovered his 1915 field equations in a way which is unrelated to Maxwell’s equations (apart from the 1911 generally covariant field equations, influenced by Hilbert’s electromagnetic-gravitational unified theory, but this is out of the scope of this post and of course unrelated to the above metaphor).

Einstein

As to the November 4, 1915 field equations of Einstein’s general theory of relativity: When all was done after November 25, 1915, Albert Einstein said that the redefinition of the components of the gravitational field in terms of Christoffel symbols had been the “key to the solution”. Michel Janssen and Jürgen Renn demonstrate that if the components of the gravitational field – the Christoffel symbols – are inserted into the 1914 Entwurf Lagrangian, then the resulting field equations (using variational principle) are the November tensor. In their account, then, Einstein found his way back to the equations of the first November paper (November 4, 1915) through considerations of physics. Hence this is the interpretation to Einstein’s above “key to the solution”.

I agree that Einstein found his way back to the equations of the first November paper through considerations of physics and not through considerations of mathematics. Mathematics would later serve as heuristic guide in searching for the equations of his unified field theory. However, it seems to me that Michel Janssen and Jürgen Renn actually iterate Einstein’s November 4, 1915 variational method. In November 4, 1915, Einstein inserted the Christoffel symbols into his 1914 Entwurf Lagrangian and obtained the November 4, 1915 field equations (the November tensor). See explanation in my book, General Relativity Conflict and Rivalries, pp. 139-140.

Indeed Janssen and Renn write: There is no conclusive evidence to determine which came first, the redefinition of the gravitational field (in terms of the Christoffel symbols) or the return to the Riemann tensor.

Hence, in October 1915 Einstein could have first returned to the November tensor in his Zurich Notebook (restricted to unimodular transformations) and only afterwards in November 1915, could he redefine the gravitational field components in terms of the Christoffel symbols. Subsequently, this led him to a redefinition of the Entwurf Lagrangian and, by variational method, to a re-derivation of the 1912 November tensor.

9481ad94bd

Van Gogh had nostrified Hilbert (Hilbert visited Van Gogh, closed time-like loops…. ….)

Finally, Michel Janssen and Jürgen Renn write: Despite Einstein’s efforts to hide the Entwurf scaffold, the arch unveiled in the first November paper (November 4, 1915) still shows clear traces of it.

I don’t think that Einstein tried to hide the Entwurf scaffold. Although later he wrote Arnold Sommerfeld: “Unfortunately, I have immortalized the last error in this struggle in the Academy-papers, which I can send to you soon”, in his first November paper Einstein had explicitly demonstrated equations exchange between 1914 Entwurf and new covariant November ones, restricted to unimodular transformations.

Stay tuned for my book release, forthcoming soon (out by the end of 2015) on the history of general relativity, relativistic cosmology and unified field theory between 1907 and 1955.

Einstein and 1915 General Relativity

My new paper shows that a correction of one mistake was crucial for Einstein’s pathway to the first version of the 1915 general theory of relativity, but also might have played a role in obtaining the final version of Einstein’s 1915 field equations. In 1914 Einstein wrote the equations for conservation of energy-momentum for matter, and established a connection between these equations and the components of the gravitational field. He showed that a material point in gravitational fields moves on a geodesic line in space-time, the equation of which is written in terms of the Christoffel symbols. By November 4, 1915, Einstein found it advantageous to use for the components of the gravitational field, not the previous equation, but the Christoffel symbols. He corrected the 1914 equations of conservation of energy-momentum for matter. Einstein had already basically possessed the field equations in 1912 together with his mathematician friend Marcel Grossman, but because he had not recognized the formal importance of the Christoffel symbols as the components of the gravitational field, he could “not obtain a clear overview”. Finally, considering the energy-momentum conservation equations for matter, an important similarity between equations suggests that, this equation could have assisted Einstein in obtaining the final form of the field equations (the November 25, 1915 ones) that were generally covariant.

My new paper on general relativity

Eisntein

 

Einstein’s pathway to his General Theory of Relativity

Einstein thought that when dealing with gravity high velocities are not so important. So in 1912 he thought about gravity in terms of the principle of relativity and not in terms of the constant-speed-of-light postulate (special relativity). But then he engaged in a dispute with other scholars who claimed that he gave up the central postulate of his special theory of relativity. x

File:Max abraham.png

Max Abraham

File:Gunnar Nordström.jpg

Gunnar Nordström

Einstein’s Pathway to his Equivalence Principle 1905-1907

paper

1912 – 1913 Static Gravitational Field Theory

paper

1913 – 1914 “Entwurf” theory

paper

Berlin “Entwurf” theory 1914

paper

The Einstein-Nordström Theory

paper

Dawn of “Entwarf theory”

paper

1915 Relativity Theory

paper

1916 General Theory of Relativity

paper

שנים לטנסור המטרי 100 Years of Metric Tensor

 לפני מאה שנים ב-2012 איינשטיין לראשונה אימץ את הטנסור המטרי. באחד ממאמריו איינשטיין סיפר לקורא שלו:”הדרך שבה אני עצמי עברתי, הייתה עקיפה ופתלתלה למדי, כי אחרת אינני יכול לקוות שהוא יתעניין יותר מידי בתוצאה של סוף המסע”, תורת היחסות הכללית. למטה מובאת רשימה של ספרים ומאמרים שנכתבו על ידי חוקרים מהעולם על דרכו של איינשטיין לתורת היחסות הכללית והפילוסופיה של היחסות הכללית.

A hundred years ago, in 1912, Einstein adopted the metric tensor. In one of his later papers Einstein told his reader about “the road that I have myself travelled, rather an indirect and bumpy road, because otherwise I cannot hope that he will take much interest in the result at the end of the journey”: the General theory of Relativity

Relatively speaking

The following  list of books and papers discussing Einstein’s Pathway to General Relativity and Philosophy of General Relativity covers the period 1912-1916, and beyond

Corry, Leo, Renn, Jürgen and John Stachel, “Belated Decision in the Hilbert-Einstein Priority Dispute”, 1997, in Stachel 2002, pp. 339-346

Corry, Leo, Renn, Jürgen and John Stachel, “Response to F. Winterberg ‘On Belated Decision in the Hilbert-Einstein Priority Dispute'”, 2004, Z. Naturforsen 59a, pp. 715-719

Earman, John, Janis, Allen, I., Massey, Gerald. I., and Rescher, Nicholas, Philosophical Problems of the Inertial and External Worlds, Essays of the philosophy of Adolf Grünbaum, 1993, University of Pittbsbutgh/ Universitätswerlag Konstanz

Earman, John, Janssen, Michel, Norton, John (ed), The Attraction of Gravitation, New Studies in the History of General Relativity, Einstein Studies Vol 5, 1993, Boston: Birkhäuser

Earman, John and Janssen, Michel, “Einstein’s Explanation of the Motion of Mercury’s Perihelion”, in Earman, Janssen, and Norton, John, 1993, pp. 129-172

Goener, Hubert, Renn Jürgen, Ritter, Jim, Sauer, Tilman (ed), The Expanding Worlds of General Relativity, 1999, Boston: Brikhäser

Howard, Don, “Point Coincidences and Pointer Coincidences: Einstein on Invariant Structure in Spacetime Theories”, in Goener et al, 1999, pp. 463-500

Howard, Don and Norton, John, “Out of the Labyrinth? Einstein, Hertz, and the Göttingen Answer to the Hole Argument”, in Earman, Janssen, Norton (ed), 1993, pp. 30-61

Howard, Don and Stachel, John (eds.), Einstein and the History of General Relativity: Einstein Studies, Volume 1, 1989, New York: Birkhauser

Janssen, Michel, “The Einstein-De Sitter Debate and its Aftermath”, lecture, pp. 1-8, based on “The Einstein-De Sitter-Weyl-Klein Debate” in CPAE, Vol. 8, 1998, pp. 351-357

Janssen, Michel, “Rotation as the Nemesis of Einstein’s Entwurf Theory”, in Goener, Renn, Ritter and Sauer (ed), 1999, pp. 127-157

Janssen, Michel, “The Einstein-Besso Manuscript: A Glimpse Behind the Certain of a Wizard”, Freshman Colloquium: “Introduction to the Arts and Sciences”, Fall 2002

Janssen, Michel, “Of Pots and Holes: Einstein’s Bumpy Road to General Relativity”, in Renn, 2005, pp-58-85; reprinted as “Einstein’s First Systematic Exposition of General Relativity”, pp, 1-39

Janssen Michel and Renn, Jürgen, “Untying the Knot: How Einstein Found His Way Back to Field Equations Discarded in the Zurich Notebook”, in Renn et all, Vol. 1, 2007, pp. 839-925

Janssen, Michel, “What did Einstein know and When did he Know It?” in Renn et all, Vol. 2, 2007, pp. 786-837

Janssen, Michel, “‘No Success Like Failure’: Einstein’s Quest for General Relativity”, The Cambridge Companion to Einstein, 2009

Alfred Eisenstaedt, Einstein Life Magazine

Norton, John, “How Einstein Found His Field Equations: 1912-1915”, Historical Studies in the Physical Sciences 14, 1984, pp. 253-315. Reprinted in Howard, Don and Stachel, John (eds.), 1989, pp 101-159

Norton, John, “General Covariance and the Foundations of General Relativity: Eight Decades of Dispute,” Reports on Progress in Physics 56, 1993, pp.791-858

Norton, John, “Einstein and Nordström: Some Lesser-Known Thought Experiments in Gravitation”, Archive for History of Exact Sciences 45, 1993, pp.17-94

Norton, John, “Nature in the Realization of the Simplest Conceivable Mathematical Ideas: Einstein and the Canon of Mathematical Simplicity”, Studies in the History and Philosophy of Modern Physics 31, 2000, pp.135-170

Norton, John, “Einstein, Nordström and the early Demise of Lorentz-covariant, Scalar Theories of Gravitation,” in Renn et all, Vol. 3, 2007, pp. 413-487

Renn, Jürgen and Tilman Sauer, “Heuristics and mathematical Representation in Einstein Search for a Gravitational Field Equation”, Preprint 62, Max Planck Institute for the History of Science, 1997

Renn, Jürgen, (ed.) Einstein’s Annalen Papers. The Complete Collection 1901-1922, 2005, Germany: Wiley-VCH Verlag GmbH & Co

Renn, Jürgen, “The Summit Almost Scaled: Max Abraham as a Pioneer of a Relativistic Theory of Gravitation”, in Renn et all, Vol.3, 2007, pp. 305-330

Renn, Jürgen, Norton, John, Janssen, Michel and Stachel John, ed., The Genesis of General Relativity. 4 Vols., 2007, New York, Berlin: Springer

Renn, Jürgen and Stachel, John, “Hilbert’s Foundation of Physics: From a Theory of Everything to a Constituent of General Relativity”, in Renn et all, Vol. 4, 2007, pp. 857-974

Time Magazine Photo

Stachel, John, “The Genesis of General Relativity”, Physics 100, 1979, pp. 428-442; reprinted in Stachel, 2002, pp. 233-244

Stachel, John, “The Rigidity Rotating Disk as the ‘Missing Link’ in the History of General Relativity”, General Relativity and Gravitation one Hundred Years After the Birth of Albert Einstein, Vol. 1, 1980, pp. 1-15; reprinted in Stachel, 2002, pp. 245-260

Stachel, John, “‘Subtle is the Lord'”… The Science and Life of Albert Einstein” by Abraham Pais”, Science 218, 1982, pp. 989-990; reprinted in Stachel, 2002, pp. 551-554

Stachel, John, “Albert Einstein: The Man beyond the Myth”, Bostonia Magazine 56, 1982, pp. 8–17; reprinted in Stachel, 2002, pp. 3-12

Stachel, John, “Einstein and the ‘Research Passion'”, Talk given at the Annual Meeting of the American Associates for the Advancement of Science in Detroit, May 1983; reprinted in Stachel, 2002, pp. 87-94

Stachel, John, “The Generally Covariant Form of Maxwell’s Equations”, in J.C. Maxwell, the Sesquicentennial Symposium, M.S. Berger (ed), 1984, Elsevier: Amsterdam, pp. 23-37.

Stachel, John, “What a Physicist Can Learn From the Discovery of General Relativity”, Proceedings of the Fourth Marcel Grossmann Meeting on General relativity, ed. R. Ruffini, Elsevier: Amsterdam, 1986, pp.1857-1862

Stachel, John, “How Einstein Discovered General Relativity: A Historical Tale With Some Contemporary Morals”, in MacCallum, M.A.H., General Relativity and Gravitation Proceedings of the 11th International Conference on General Relativity and Gravitation, 1987, pp. 200-209, reprinted in Satchel, 2002, pp. 293-300

Stachel, John, “Einstein’s Search for General Covariance 1912-1915”, in Howard, Don and Stachel John (eds), 1989, pp. 63-100; reprinted in Stachel, 2002, pp. 301-338

Stachel, John, “Albert Einstein (1897-1955), The Blackwell Companion to Jewish Culture, ed Glenda Abramson, Oxford: Blackwell, pp. 198-199; reprinted in Stachel, 2002, pp. 19-20

Stachel, John, “the Meaning of General Covariance. The Hole Story”, in Earman, John, Janis, Allen, et all, 1993, pp. 129-160.

Stachel, John, “The Other Einstein: Einstein Contra Field Theory”, Science in Context 6, 1993, pp. 275-290; reprinted in Stachel, 2002, pp. 141-154

Stachel, John, “Changes in the Concept of Space and Time Brought About by Relativity”, Artifacts, Representations and Social Practice: Essays for Marx Wartofsky, eds Carol Gould and Robert S. Cohen., Dordrecht/Boston/London: Kluwer Academic, pp. 141-162

Stachel, John, “History of relativity,” in Brown, Laurie M., Pais, Abraham, and Sir Pippard, Brian (eds.), Twentieth century physics, 1995, New York: American Institute of Physics Press, pp. 249-356

Stachel, John, “Albert Einstein: A Biography by Albert Fölsing”, Review of Albrecht Fölsing, Albert Einstein: A Biography, in Physics Today, January, 1998; reprinted in Stachel, 2002, pp. 555-556

Stachel, John, “New Light on the Einstein-Hilbert Priority Question”, Journal of Astrophysics 20, 1999, pp. 90-91; reprinted in Stachel, 2002, pp. 353-364

Stachel, John, “Einstein and Infeld: Seen through Their Correspondence”, Acta Physica Polonica B 30, 1999, pp. 2879–2904; reprinted in Stachel, 2002, pp. 477–497

Stachel, John, “The First-two Acts”, in Renn et all, 2007, Vol. 1, pp. 81-112; appeared first in Stachel, 2002, pp. 261-292

Stachel, John, Einstein from ‘B’ to ‘Z’, 2002, Washington D.C.: Birkhauser

Stachel, John, “Albert Einstein”, The 2005 Mastermind Lecture, Proceedings of the British Academy 151, 2007, pp.423-458

Stachel, John, “Where is Creativity? The example of Albert Einstein”, Invited Lecture at the Congresso International de Filosophia, Pessoa & Sociadade (Person and Society), Braga, 17-19 November 2005, to appear in 2012

Stachel, John, “Einstein and Hilbert”, invited lecture in March 21, 2005 Session: Einstein and Friends, American Physical Society, Los Angeles; and response to Questions from FAZ on Hilbert and Einstein

Stachel, John, “Einstein’s Intuition and the Post-Newtonian Approximation”, World Scientific, 2006, pp. 1-15

Stachel, John, “The Story of Newstein: Or is Gravity Just Another Pretty Force?”, in Renn, et all, Vol. 4, 2007, pp. 1041-1078

Stachel, John, “A world Without Time: the Forgotten Legacy of Gödel and Einstein”, Notices of the American Mathematical Society 54, 2007, pp. 861-868/1-8

Stachel, John, “Albert Einstein”, The New Dictionary of Scientific Biography, Vol. 2, Gale 2008, pp. 363-373

Stachel, John, “The Hole Argument”, Living Reviews in Relativity, June 25, 2010, to appear in 2012

Stachel, John, “The Rise and Fall of Einstein’s Hole Argument”, pp. 1-15 to appear in 2012

Stachel, John, “The Scientific Side of the Einstein-Besso Relationship”, to appear in 2012

Torretti, Roberto, Relativity and Geometry, 1983/1996, Ney-York: Dover

Prime Minister of Israel Ben Gurion visits Albert Einstein in Princeton. Here

Einstein’s Pathway to the Special Theory of Relativity and the General Theory of Relativity

Einstein’s Pathway to the Special Theory of Relativity

Einstein’s Pathway to the Special Theory of Relativity

Einstein’s discovery of Special Relativity

Einstein Believes in the Ether

Einstein Chases a Light Beam

Einstein recounts the Aarau thought experiment in his Autobiographical Notes, 1949

Magnet and Conductor Thought Experiment, Faraday’s magneto-electric induction

Föppl’s book on Maxwell’s theory

Ether drift and Michelson and Morley’s experiment

The Role of the Michelson-Morley Experiment on the Discovery of Relativity

The Dayton Miller Experiments

Emission theory and ether drift experiments

Paul Ehrenfest and Walter Ritz. Ritz’s Emission Theory

“The Step”

Einstein defined distant simultaneity physically; relativity of simultaneity

The Kyoto lecture notes – Einstein could have visited and consulted his close friend Michele Besso, whom he thanked at the end of his relativity paper. The Patent Office brought them together – their conversations on the way home. Besso was always eager to discuss the subjects of which he knew a great deal – sociology, medicine, mathematics, physics and philosophy – Einstein initiated him into his discovery

Joseph Sauter – Before any other theoretical consideration, Einstein pointed out the necessity of a new definition of synchronization of two identical clocks distant from one another; to fix these ideas, he told him, “suppose one of the clocks is on a tower at Bern and the other on a tower at Muri (the ancient aristocratic annex of Bern)” – synchronization of clocks by light signals.

Did Poincaré have an Effect on Einstein’s Pathway toward the Special Theory of Relativity? Einstein’s reply to Carl Seelig

Poincaré

Einstein’s pathway to the General Theory of Relativity

Entwurf theory – Einstein-Grossmann theory, Hole argument, field equations and the Einstein-Besso manuscript

Grossmann

Gunnar Nordström develops a competing theory of gravitation to Einstein’s 1912-1913 gravitation theory. Einstein begins to study Nordström’s theory and develops his own Einstein-Nordström theory. In a joint 1914 paper with Lorentz’s student Adrian Fokker – a generally covariant formalism is presented from which Nordström’s theory follows if the velocity of light is constant Here

Nordström

The three problems that led to the fall of the entwurf theory –

The gravitational field on a uniformly rotating system does not satisfy the field equations.

Covariance with respect to adapted coordinate system was a flop.

In the Entwurf theory the motion of Mercury’s perihelion came to 180 rather than 450 per century

The General Theory of Relativity – 1915

David Hilbert Enters the Game, the priority dispute – Einstein and Hilbert

In November 18 1915 Einstein calculated rapidly the precession of Mercury’s

Perihelion

Geodesic Equation. Metric tensor. Einstein’s November 4, 11, and 25 field equations.The Riemann-Christoffel Tensor; the Ricci tensor; the Einstein tensor

von Deinem zufriedenen aber ziemlich kaputen

General Theory of Relativity – 1916

Mid December to Mid January 1915: Exchange of letters between Einstein and Ehrenfest

The disk thought experiment; coordinates have no direct physical meaning Euclidean Geometry breaks down; two Globes Thought Experiment; Mach’s Principle; the principle of general relativity; the Equivalence Principle; the principle of general covariance

The Summation Convention

Motion of the Perihelion of the Planetary Orbit; Redshift; Deflection of light in a gravitational field of the sun

Einstein in the Patent Office:

Michele Besso, Joseph Sauter, and Lucian Chavan – Patent Office, Maurice Solovine and Conrad Habicht – the Olympian Academy

Annus mirabilis papers

On a Heuristic Viewpoint Concerning the Generation and Transformation of Light – It argues a heuristic manner for the existence of light quanta and derives the photoelectric law

On a New Determination of Molecular Dimensions – doctoral thesis submitted to the mathematical and natural science branch of Zürich University

On the Movement of Particles Suspended in Fluids at Rest, as Postulated by the Molecular Theory of Heat. The Brownian motion paper

On the Electrodynamics of Moving Bodies. The Relativity Paper

Does the Inertia of a Body Depend on its Energy Content? The first derivation of the mass energy equivalence

German Scientists Responded to Einstein’s Relativity Paper – Max Planck wrote Einstein. Max von Laue met Einstein

Einstein teaches his 3 friends from the Patent Office at the University of Bern

Finally Einstein leaves the Patent Office to his first post in the University of Zürich

Further reading: Stachel, John, Einstein from ‘B’ to ‘Z’, 2002, Washington D.C.: Birkhauser