Total Eclipse of the Sun and Deflection of light Rays

According to Einstein’s prediction, that is to say the deflection (bending) of light rays in the gravitational field of the Sun: those stars closest to the limb of the Sun during the eclipse are found to be displaced slightly by amounts that are inversely proportional to the distance of the stellar image from the Sun. The light from a star close to the limb of the Sun is bent inward, toward the Sun, as it passes through the Sun’s gravitational field. The image of the star appears to observers on the Earth to be shifted outward and away from the Sun.

The Universe and Dr. Einstein by Barnett (with forward by Einstein)

Barnett-TheUniverseAndDrEinstein

In 1915 Einstein calculated the angle between the actual path of the starlight, the true position of the star, and the apparent path of the ray of light, the star seen during the eclipse. He obtained a result: 1.7” (seconds of arc).

However, in 1911 and 1913 he derived a different result, actually he had obtained half of this result: 0.84” (seconds of arc).

Einstein_letter-2

Einstein’s letter to George Ellery Hale which illustrates starlight being deflected by the gravity of the Sun. Oct. 14, 1913. The Huntington Library, Art Collections, and Botanical Gardens. Here

During a total eclipse of the Sun, it is possible to take pictures of the field of stars surrounding the darkened location of the Sun, because during its occultation, the light emanating from the Sun does not interfere with visibility of fainter objects.

In the eclipse expedition of 1919 Sir Arthur Stanley Eddington and Charles Rundle Davidson went to find whether they could verify Einstein’s prediction of the deflection of starlight in the gravitational field of the Sun. Eddington and his assistant went to the island of Principe off the coast of Africa while Davidson and his assistant went to Sobral in North Brazil. In presenting their observations to the Royal Society of London in November 1919, the conclusion was that they verified Einstein’s prediction of deflection at the Sun’s limb to very good accuracy.

Eddington

Sir Arthur Stanley Eddington. Source (internet, unknown). If anyone knows the source please leave a comment.

The pictures taken during the solar eclipse are compared with pictures of the same region of the heavens taken at night. An astronomer compares his photographs taken during a total eclipse of the Sun with check plates, that is to say with comparison plates of the same stars (the eclipse field) when the Sun has moved away.

In 1919 Eddington examined the check field of stars that was photographed at Oxford Observatory. It was nearly the same as that of the total eclipse field of stars, which was photographed at the small island belonging to Portugal, Principe, at the same altitude as in Oxford in order to ensure that any systematic error, due to imperfections of the telescopes or other causes, might affect both sets of plates equally. There were differences in scale though between the compared photographs. Eddington determined these differences of scale between Oxford and Principe. The primary purpose of the comparison was to check the possibility of systematic errors arising from the different conditions of observation at Oxford and Principe.

After comparing the Oxford and Principe check plates, Eddington concluded that the Oxford photographs show none of the displacements which are exhibited by the photographs of the eclipse field taken under precisely similar instrument conditions. Eddington inferred that the displacements in the latter case could only be attributed to presence of the eclipsed Sun in the field and not to systematic errors.

Eddington’s four values of deflection in Principe were: 1.94, 1.44, 1.55 and 1.67 seconds of arc. He calculated the mean of these to be: 1.65” (seconds of arc). He added corrections due to experimental errors and due to the fact that the four determinations involved only two eclipse plates. The final Principe result was: 1.61±0.30 seconds of arc. Eddington calculated the final Sobral result: 1.98±0.12 seconds of arc and concluded: “They evidently agree with Einstein’s predicted value 1.75 seconds of arc.

IMG_2686

photo

Photos taken at the Science Museum, London. Eddington’s original negative photo.

Final confirmation of Einstein’s prediction of the deflection of light near the Sun came from William Wallace Campbell and his assistant Robert J. Trumpler at the eclipse of September 22, 1922 in Australia. Campbell and Trumpler also compared the eclipsed plates with the photographs of the same stars taken at Tahiti four months before the eclipse. The observations with the first camera led to a stellar deflection of 1.82±0.15 seconds of arc for the light deflection at the Sun’s limb. The combined observations from the two instruments used by Campbell and Trumpler gave the value of 1.75±0.9 seconds of arc for the deflection at the Sun’s limb, which is in excellent agreement with the value predicted by Einstein’s theory.

Lick

For more photos see here.

For more information on the history of eclipse expeditions and Einstein’s general theory of relativity see my books:

General Relativity Conflict and Rivalries: Einstein’s Polemics with Physicists

Ein

Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)

cover

 

 

 

 

Advertisements

General Relativity without the Equivalence principle?

I have skimmed through this book Handbook of Spacetime:

Picture1

Picture2

The following represents my impressions formulated after reading the sections about the equivalence principle.

I read this paper:

Picture3

Picture4

Picture5a

However, Einstein did not write this wonderful passage in the letter to Robert Lawson. Here is the letter to Lawson (Einstein to Lawson, 22 January 1920):

Picture7

Einstein writes to Lawson in the above letter: “The article for Nature is almost finished, but it has unfortunately become so long that I very much doubt whether it could appear in Nature“. Indeed, in a 1920 unpublished draft of a paper for Nature, “Fundamental Ideas and Methods of the Theory of Relativity, Presented in Their Development”, Einstein wrote the above long paragraph describing him in 1907 sitting in the Patent Office. He was brooding on special relativity, and suddenly there came to him the happiest thought of his life:

Picture8

Picture9

Picture10

Let us analyze this passage. The man in free fall (elevator experiments): Special relativity is incorporated into general relativity as a model of space-time experienced by an observer in free fall, over short times and distances (locally):

Between 1905 and 1907, Einstein tried to extend the special theory of relativity so that it would explain gravitational phenomena. He reasoned that the most natural and simplest path to be taken was to correct the Newtonian gravitational field equation. Einstein also tried to adapt the Newtonian law of motion of the mass point in a gravitational field to the special theory of relativity. However, he found a contradiction with Galileo’s law of free fall, which states that all bodies are accelerated in the gravitational field in the same way (as long as air resistance is neglected). Einstein was sitting on a chair in my patent office in Bern and then suddenly a thought struck him: If a man falls freely, he would not feel his weight. This was the happiest thought of his life. He imagined an observer freely falling from the roof of a house; for the observer there is during the fall – at least in his immediate vicinity – no gravitational field. If the observer lets go of any bodies, they remain relative to him, in a state of rest or uniform motion, regardless of their particular chemical and physical nature. The observer is therefore justified in interpreting his state as being (locally) at rest. Einstein’s 1907 breakthrough was to consider Galileo’s law of free fall as a powerful argument in favor of expanding the special principle of relativity to systems moving non-uniformly relative to each other. Einstein realized that he might be able to generalize and extend special relativity when guided by Galileo’s law of free fall. The Galilean law of free fall (or inertial mass is equal to gravitational mass) became known as the weak principle of equivalence.

Lewis Ryder explains: “Some writers distinguish two versions of the equivalence principle: the weak equivalence principle, which refers only to free fall in a gravitational field and is stated… as The worldline of a freely falling test body is independent of its composition or structure; and the strong equivalence principle, according to which no experiment in any area of physics should be able, locally, to distinguish a gravitational field from an accelerating frame”.

There are several formulations of the weak and the strong principles of equivalence in the literature. By far the most frequently used formulation of the strong principle of equivalence is Einstein’s 1912 local principle of equivalence: In a local free falling system special relativity is valid. (See my book General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists, 2015, for further details).

Nick Woodhouse explains:

Picture32

in the chapter:

Picture31

Hence Joshi says:

Picture34

in the chapter:

Picture33

Lewis Ryder

Picture23

writes in the above paper:

Picture35

(i.e. Einstein 1911 paper: “On the Influence of Gravitation on the Propagation of Light”). He formulates the equivalence principle in the following way: “In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the local reference frames are inertial and the laws of physics are consistent with special relativity”. He then writes:

Picture11

The equivalence principle enables us to find just one component g00 – of the metric tensor gmn. All components can be found (at least in principle) from the Einstein field equations. Ryder thus concludes that the equivalence principle is dispensable. I don’t quite agree with Ryder.

In my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012 and also in my 2014 paper,  “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv: 1411.7370v [physics.hist-ph], 26 Nov, 2014, I demonstrate the following:  On November 18, 1915, Einstein found approximate solutions to his November 11, 1915 field equations and explained the motion of the perihelion of Mercury. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. Indeed, the first to offer an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 11, 1915 paper. Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. In January, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article, “The Foundation of the General Theory of Relativity”, on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Even so, Einstein preferred not to base himself on Schwarzschild’s exact solution, and he returned to his first order approximate solution from November 18, 1915. In the final part of the 1916 review paper Einstein demonstrated that a gravitational field changes spatial dimensions and the clock period:

Picture25

This equation is further explained in my 2012 paper (page. 56):

Picture24

Neither did Einstein use the Schwarzschild solution nor was he guided by the  equivalence principle. He was rather using an approximate solution and the metric, the line element to arrive at the same factor he had obtained by assuming the heuristic equivalence principle. He thus demonstrated that the equivalence principle was a fundamental principle of his theory, because in 1912 he formulated an equivalence principle valid only locally  (see my book: General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists, 2015, p. 184). I further explain it below.

Ryder then explains: The equivalence principle is local (a complete cancelation of a gravitational field by an accelerating frame holds locally). However, over longer distances two objects in free fall at different places in a realistic gravitational field move toward each other and this does not happen in an accelerating elevator. The cancelation of the gravitational field by an accelerating field is thus not complete. According to general relativity this effect (tidal effect) is a consequence of the curvature of space-time:

Picture36

Although the equivalence principle might have been a heuristic guide to Einstein in his route to the fully developed theory of general relativity, Ryder holds that it is now irrelevant.

I don’t agree with Ryder’s conclusion which resembles that of John Lighton Synge (and Hermann Bondi). Indeed the equivalence principle is not valid globally (i.e. for tidal effects). Although the strong equivalence principle can at best be valid locally, it is still crucial for the general theory of relativity:

  1. Einstein formulated an equivalence principle which is valid only locally. Special relativity is valid locally and space-time is locally the Minkowski space-time.
  2. The principle of equivalence is fundamental for a metric theory and for our understanding of curved space-time: Freely falling test bodies move along geodesic lines under the influence of gravity alone, they are subject to an inertio-gravitational field . The metric determines the single inertio-gravitational field (affine connection), and there is breakup into inertia and gravitation relative to the acceleration. According to the equivalence principle, the components of the affine connection vanish in local frames. John Stachel quotes a passage from Einstein’s letter to Max von Laue:

Picture45

Stachel, John, “How Einstein Discovered General Relativity: A Historical Tale with Some Contemporary Morals”, Einstein B to Z, 2002.

Indeed Ryder quotes J. L. Synge :

Picture42

Einstein’s equivalence principle was criticized by Synge:

Picture48

Synge, J. L. (1960). Relativity: The General Theory (Amsterdam, The Netherlands: North Holland Publishing Co).

And Hermann Bondi reacted to Einstein’s principle of equivalence:

Picture28

Bondi also said (‘NO SUCCESS LIKE FAILURE …’: EINSTEIN’S QUEST FOR GENERAL RELATIVITY, 1907–1920, Michel Janssen):

Picture29

Picture30

Other authors contributing to the Handbook of Spacetime write the following:

Graham S. Hall in his paper:

Picture13

writes the following:

Picture14

“The choice of a geodesic path (Einstein’s principle of equivalence) reflects the results of the experiments of Eötvös and others, which suggest that the path of a particle in a pure gravitational field is determined by its initial position and initial velocity”. This is not Einstein’s equivalence principle. This is the Galilean principle of equivalence or the weak equivalence principle.

And according to Vesselin Petkov:

Picture15

the geodesic line is indeed a manifestation of Galileo’s free fall law:

Picture16

Ryder presents tests for the equivalence principle. The operation of the global positioning system, the GPS, is a remarkable verification of the time dilation. The GPS system consists of an array of 24 satellites, which describe an orbit round the earth of radius 27,ooo km, and are 7000 km apart, and every 12 hours travel at about 4km/s.  Each satellite carries an atomic clock, and the purpose is to locate any point on the earth’s surface. This is done by sensing radio signals between the satellites and the receiver on the earth, with the times of transmission and reception recorded. The distances are then calculated. Only three satellites are needed to pinpoint the position of the receiver on the earth. Relativistic effects must be taken into account arising both from special relativity (time dilation: moving clocks on the satellites run slower than clocks at rest on the surface of the earth) and from general relativity (gravitational time dilation/gravitational frequency shift: when viewed from the surface of the Earth, clocks on the satellites appear to run faster than identical clocks on the surface of the earth). The combined effect (the special relativistic correction and the general relativistic correction) is that the clocks on the satellites run faster than identical clocks on the surface of the earth by 38.4 microseconds per day. The clocks thus need to be adjusted by about 4 x 10-10s per day. If this factor is not taken into account, the GPS system ceases to function after several hours. This provides a stunning verification of relativity, both special and general.

Neil Ashby dedicates his paper to the GPS:

Picture37

and gives a critical reason why the equivalence principle is indeed relevant. Consider again the GPS (global positioning system) or generally, Global navigation satellite systems (GNNS). For the GPS or GNNS, the only gravitational potential of significance is that of the earth itself. The earth and the satellites fall freely in the gravitational field of the sun (and external bodies in the solar system). Hence, according to the equivalence principle one can define a reference system which is locally very nearly inertial (with origin at the earth’s center of mass). In this locally inertial coordinate system (ECI) clocks can be synchronized using constancy of the speed of light (remember that special relativity is incorporated into general relativity as a model of space-time experienced locally by an observer in free fall):

Picture38

One writes an approximate solution to Einstein’s field equation and obtains that clocks at rest on earth

Picture39

run slow compared to clocks at rest at infinity by about seven parts in 1010.

Unless relativistic effects on clocks [clock synchronization; time dilation, the apparent slowing of moving clocks (STR); frequency shifts due to gravitation, gravitational redshift(GTR)] are taken into account, GPS will not work. GPS is thus a huge and remarkable laboratory for applications of the concepts of special and general relativity. In addition, Shapiro signal propagation delay (an additional general relativistic effect) and spatial curvature effects are significant and must be considered at the level of accuracy of 100 ps of delay. Ashby mentions another effect on earth that is exactly cancelled:

Picture41

Wesson in this paper:

תמונה1

presents the standard explanation one would find in most recent textbooks on general relativity:

תמונה1

The Christoffel symbols are also used to define the Riemann tensor, which encodes all the relevant information about the gravitational field. However, the Riemann tensor has 20 independent components, and to obtain field equations to solve for the 10 elements of the metric tensor requires an object with the same number of components. This is provided by the contracted Ricci tensor. This is again contracted (taking its product with the metric tensor) to obtain the Ricci curvature scalar.  This gives a kind of measure of the average intensity of the gravitational field at a point in space-time. The combination of the Ricci tensor and the Ricci scalar is the Einstein tensor and it comprises the left hand-side of Einstein’s field equations.

At every space-time point there exist locally inertial reference frames, corresponding to locally flat coordinates carried by freely falling observers, in which the physics of general relativity is locally indistinguishable from that of special relativity. In physics textbooks this is indeed called the strong equivalence principle and it makes general relativity an extension of special relativity to a curved space-time.

Wesson then writes that general relativity is a theory of accelerations rather than forces and refers to the weak equivalence principle:

תמונה3

As said above, Einstein noted that if an observer in free fall lets go of any bodies, they remain relative to him, in a state of rest or uniform motion, regardless of their particular chemical and physical nature. This is the weak principle of equivalence: The worldline of a freely falling test body is independent of its composition or structure. The test body moves along a geodesic line. The geodesic equation is independent of the mass of the particle. No experiment whatsoever is able, locally, to distinguish a gravitational field from an accelerating system – the strong principle of equivalence (see Ryder above). A freely falling body is moving along a geodesic line. However, globally space-time is curved and this causes the body’s path to deviate from a geodesic line and to move along a non-geodesic line. Hence we speak of geodesics, manifolds, curvature of space-time, rather than forces.

José G. Pereira explains the difference between curvature and torsion (and force) (see paper here):

Picture17

General relativity is based on the equivalence principle and geometry (curvature) replaces the concept of force. Trajectories are determined not by force equations but by geodesics:

Picture26

How do we know that the equivalence principle is so fundamental?  Gravitational and inertial effects are mixed and cannot be separated in classical general relativity and the energy-momentum density of the gravitational field is a pseudo-tensor (and not a tensor):

Picture18

General relativity is grounded on the equivalence principle. It includes the energy-momentum of both inertia and gravitation:

Picture19

In 1928 Einstein proposed a geometrized unified field theory of gravitation and electromagnetism and invented teleparallelism. Einstein’s teleparallelism was a generalization of Elie Cartan’s 1922 idea. Picture20

According to Pereira et al: “In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. On the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence”.

See his paper with R. Aldrovandi and K. H. Vu: “Gravitation Without the Equivalence Principle”, General Relativity and Gravitation 36, 2004, 101-110.

Petkov explains in his paper: (see further above)

Picture21

the following:

Picture22

The bottom line is that classical general relativity is fundamentally based on the equivalence principle. One cannot reject Einstein’s route to the theory of general relativity.

 

 

 

 

 

 

 

The Road to Relativity and Dishonesty in Scientific Research

Prof. Hanoch Gutfreund, the former president of the Hebrew University of Jerusalem, has been plagiarizing my papers and book. To call prof. Gutfreund prolific in plagiarizing my work would be an understatement. The serious damages I sustain from this in Israel are enormous, actually it is far more damaging than I previously thought. I wrote to the president of the Hebrew University in Jerusalem but the latter has not even answered my email. Hence it seems he fails to take responsibility for damage caused by plagiarism. I am not surprised.

In the book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity” (an annotated facsimile of Einstein’s original handwritten manuscript on general relativity and explanation of Einstein’s manuscript and equations), co-authored by prof. Jürgen Renn, prof. Gutfreund writes:

cosmo

Prof. Gutfreund has picked this passage with only slight changes from my 2013 paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013.

My name is not mentioned in note 4:

notes

Compare the above paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity, to the abstract of my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life”:

gamow2

gamow

And compare the penultimate paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized my paper, received the citations.

Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016: “An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

Gamow

It is quite obvious the Prof. Gutfreund has effectively paraphrased the passage from my paper. On November 30, 2015,  Prof. Gutfreund said in his plenary lecture, “100 years of General Relativity – What are we Celebrating?” At the Berlin Conference: A Century of General Relativity:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

My second bookGeneral Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists (published on December 1, 2015) has a whole chapter dedicated to Einstein’s “biggest blunder”. This chapter is based on my 2013 ArXiv paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

gut3

Hence, plagiarism of my 2013 paper on Albert Einstein and George Gamow causes damage to my second book and to my academic status.

In addition, Prof. Gutfreund writes in The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity”:

gut

A circle around the origin of coordinates is a rotating disk (in his 1916 paper “The Foundation of General Relativity”, Einstein calls the disk “a circle around the origin”).

In the preceding passage prof. Gutfreund have paraphrased a passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

disk1

 

disk2

and from my 2014 paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014 [Equation (70) is my equation (6) and equation (71) is my equation (11)]:

gut2

Towards the end of his 1916 paper, “The Foundation of General Relativity”, Einstein demonstrates that the gravitational field changes spatial dimensions and the clock period. However, nowhere does Einstein directly relate the rotating disk story to the  above derivation. I have invoked this interpretation of Einstein’s paper. Einstein writes:

Ein5 Ein4

Digital Einstein

On November 30, 2015, Prof. Gutfreund lifted another passage from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story” and changed a word here and there, in his plenary lecture, “100 years of General Relativity – What are we Celebrating? at the Berlin Conference: A Century of General Relativity:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

In the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014, I wrote:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

He could have though picked the idea from my 2012 paper, Weinstein, Galina, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild.jpg

Einstein’s equations in his 1916 paper, “The Foundation of General Relativity”:

Schwartz1

Schwartz2

Schwartz3

In my book, General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists  I have also developed my previous ideas from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”.

 

 

 

 

 

A Historical Note on Gravitational Waves

Dr. Roni Gross (press conference) holds Einstein’s general relativity paper from May 1916, “The Foundation of the General Theory of Relativity” (“Die Grundlage der allgemeinen Relativitätstheorie.” Annalen der Physik 49, 769-822). However, in this paper Einstein did not discover gravitational waves. Prof. Hanoch Gutfreund, the academic director of the Albert Einstein Archives, asked Dr. Rony Gross to present this document to the journalists.

ripples2

caption.jpg

here.

Equations (52) and (53) from the original page on the right above:

ripples

are Einstein’s field equations for systems in unimodular coordinates. There are no gravitational waves here!

In his 1916 general relativity paper, “The Foundation of the General Theory of Relativity”, Einstein imposed a restrictive condition on his field equations. This condition is called unimodular coordinates.

Einstein presented the gravitational waves later in 1916, in a paper published under the title, “Approximate Integration of the Field Equations of Gravitation” (“Näherungsweise Integration der Feldgleichungen der Gravitation.” Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 688–696).

After the 1916 general relativity paper, Einstein succeeded in relinquishing the restrictive unimodular coordinates condition and in his new gravitational waves paper his equations were not restricted to systems in unimodular coordinates.

feld

How did Einstein predict the existence of gravitational waves?

Einstein’s Discovery of Gravitational Waves 1916-1918

Einstein and Gravitational Waves 1936-1938

For further details on Einstein predicting gravitational waves read Chapter 3, section 1 in my new book: General Relativity Conflict and Rivalries, Einstein Polemics with physicists.

book4

I present and read several sections of my books on Einstein

book6

I present my two books and read several sections of my books out loud:

books

Until February 29, 2016, you can all receive a generous discount when purchasing my book, General Relativity Conflict and Rivalries: Einstein’s Polemics with Physicists by Cambridge Scholars.

book4

book3

 

Some of the topics discussed in my first book, Einstein’s Pathway to the Special Theory of Relativity

People ask questions about Einstein’s special theory of relativity: How did Einstein come up with the theory of special relativity? What did he invent? What is the theory of special relativity? How did Einstein discover special relativity? Was Einstein the first to arrive at special relativity? Was Einstein the first to invent E = mc2?

Did Poincaré publish special relativity before Einstein? Was Einstein’s special theory of relativity revolutionary for scientists of his day? How did the scientific community receive Einstein’s theory of special relativity when he published it? What were the initial reaction in the scientific community after Einstein had published his paper on special relativity?

In my book, Einstein’s Pathway to the Special Theory of Relativity, I try to answer these and many other questions.The topics discussed in my book are the following:

I start with Einstein’s childhood and school days.

img_4149a

I then discuss Einstein’s student days at the Zurich Polytechnic. Einstein the rebellious cannot take authority, the patent office, Annus Mirabilis, University of Bern and University of Zurich, Minkowski’s space-time formalism of special relativity.

תמונה2

Young Einstein, Aarau Class 1896

Additional topics treeated in my book are the following: Fizeau’s water tube experiment, Fresnel’s formula (Fresnel’s dragging coefficient), stellar aberration, and the Michelson and Michelson-Morley Experiments.

Einpt

Albert Einstein at the Patent office

Mileva Marić and Einstein

תמונה4

img_4152a

img_4152b

Eduard Tete, Mileva Marić and Hans Albert

תמונה6

Einstein’s road to the special theory of relativity: Einstein first believes in the ether, he imagines the chasing a light beam thought experiment and the magnet and conductor thought experiment. Did Einstein respond to the Michelson and Morley experiment? Emission theory, Fizeau’s water tube experiment and ether drift experiments and Einstein’s path to special relativity; “The Step”.

G3

Henri Poincaré’s possible influence on Einstein’s road to the special theory of relativity.

p0038x8l_640_360

Einstein’s methodology and creativity, special principle of relativity and principle of constancy of the velocity of light, no signal moves beyond the speed of light, rigid body and special relativity, the meaning of distant simultaneity, clock synchronization, Lorentz contraction, challenges to Einstein’s connection of synchronisation and Lorentz contraction, Lorentz transformation with no light postulate, superluminal velocities, Laue’s derivation of Fresnel’s formula, the clock paradox and twin paradox, light quanta, mass-energy equivalence, variation of mass with velocity, Kaufmann’s experiments, the principles of relativity as heuristic principles, and Miller ether drift experiments.

Sagan

The book also briefly discusses general relativity: Einstein’s 1920 “Geometry and Experience” talk (Einstein’s notion of practical geometry), equivalence principle, equivalence of gravitational and inertial mass, Galileo’s free fall, generalized principle of relativity, gravitational time dilation, the Zurich Notebook, theory of static gravitational fields, the metric tensor, the Einstein-Besso manuscript, Einstein-Grossmann Entwurf theory and Entwurf field equations, the hole argument, the inertio-gravitational field, Einstein’s general relativity: November 1915 field equations, general covariance and generally covariant field equations, the advance of Mercury’s perihelion, Schwarzschild’s solution and singularity, Mach’s principle, Einstein’s 1920 suggestion: Mach’s ether, Einstein’s static universe, the cosmological constant, de Sitter’s universe, and other topics in general relativity and cosmology which lead directly to my second book, General Relativity Conflict and Rivalries.

Einstein2

My books

Einstein2

The Einstein Rosen bridge and the Einstein Podolsky Rosen paradox, ER and EPR: Wormhole and entanglement

The Einstein-Rosen Bridge and the Einstein Podolsky Rosen paradox. I demonstrate that the two-body problem in general relativity was a heuristic guide in Einstein’s and collaborators’1935 work on the Einstein-Rosen bridge and EPR paradox.

In 2013 Juan Maldacena and Leonard Susskind demonstrated that the Einstein Rosen bridge between two black holes is created by EPR-like correlations between the microstates of the two black holes. They call this the ER = EPR relation, a geometry–entanglement relationship: entangled particles are connected by a Schwarzschild wormhole. In other words, the ER bridge is a special kind of EPR correlation: Maldacena and Susskind’s conjecture was that these two concepts, ER and EPR, are related by more than a common publication date 1935. If any two particles are connected by entanglement, the physicists suggested, then they are effectively joined by a wormhole. And vice versa: the connection that physicists call a wormhole is equivalent to entanglement. They are different ways of describing the same underlying reality.

EPR

This image was published in a Nature article, Ron Cowen, “The quantum source of space-time”,  explaining the geometry–entanglement relationship and Maldacena’s and Susskind’s ER = EPR idea: Quantum entanglement is linked to a wormhole from general relativity. This representation is deterministic and embodies the many worlds interpretation: Collapse of the wave function never takes place. Instead, interactions cause subsystems to become entangled. Each measurement causes the branches of the tree to decohere; the quantum superposition being replaced by classical probabilities. The observer follows a trajectory through a tree. The entire tree, i.e., the entire wave function, must be retained and the universe is the complicated network of entanglements, branches of the tree: the wormhole bifurcating throats and mouths in the universe. See Susskind’s new paper from April 2016. Hence general relativity and quantum mechanics are linked by ER = EPR and Einstein’s soul can rest in peace because god will not play dice.

Maldacena and Susskind explain that one cannot use EPR correlations to send information faster than the speed of light.  Similarly, Einstein Rosen bridges do not allow us to send a signal from one asymptotic region to the other, at least when suitable positive energy conditions are obeyed. This is sometimes stated as saying that (Schwarzschild) Lorentzian wormholes are not traversable.

I uploaded a paper to the ArXiv: “Two-body problem in general relativity: A heuristic guide for the Einstein-Rosen bridge and EPR paradox”

In this paper I discuss the possible historical link between the 1935 Einstein-Rosen bridge paper and the 1935 Einstein-Rosen-Podolsky paper. The paper is a first version and I intend to upload a second version.

Between 1935 and 1936, Einstein was occupied with the Schwarzschild solution and the singularity within it while working in Princeton on the unified field theory and, with his assistant Nathan Rosen, on the theory of the Einstein-Rosen bridges. He was also occupied with quantum theory. He believed that quantum theory was an incomplete representation of real things. Together with Rosen and Boris Podolsky he invented the EPR paradox. In this paper I demonstrate that the two-body problem in general relativity was a heuristic guide in Einstein’s and collaborators’1935 work on the Einstein-Rosen bridge and EPR paradox.

In 1935 Einstein explained that one of the imperfections of the general theory of relativity was that as a field theory it was not complete in the following sense: it represented the motion of particles by the geodesic equation. A mass point moves on a geodesic line under the influence of a gravitational field. However, a complete field theory implements only fields and not the concepts of particle and motion. These must not exist independently of the field but must be treated as part of it. Einstein wanted to demonstrate that the field equations for empty space are sufficient to determine the motion of mass points. In 1935 Einstein attempted to present a satisfactory treatment that accomplishes a unification of gravitation and electromagnetism. For this unification Einstein and Rosen needed a description of a particle without singularity. In 1935, they joined two Schwarzschild solutions at the Schwarzschild limit and omitted part of the space-time beyond the Schwarzschild singularity. They showed that it was possible to do this in a natural way and they proposed the Einstein-Rosen bridge solution.

In the Einstein-Rosen bridges paper of 1935, Einstein negated the possibility that particles were represented as singularities of the gravitational field because of his polemic with Ludwig Silberstein. Silberstein thought he had demonstrated that general relativity was problematic. He constructed, for the vacuum field equations for the two-body problem, an exact static solution with two singularity points that lie on the line connecting these two points. The singularities were located at the positions of the mass centers of the two material bodies. Silberstein concluded that this solution was inadmissible physically and contradicted experience. According to his equations the two bodies in his solution were at rest and were not accelerated towards each other; these were nonallowed results and therefore Silberstein thought that Einstein’s field equations should be modified together with his general theory of relativity. Before submitting his results as a paper to the Physical Review, Silberstein communicated them to Einstein. This prompted Einstein’s remark, in his paper with Rosen in 1935, that matter particles could not be represented as singularities in the field.

Einstein and Rosen were trying to permanently dismiss the Schwarzschild singularity and adhere to the fundamental principle that singularities of the field are to be excluded. Einstein explained that one of the imperfections of the general theory of relativity was that as a field theory it was not complete because it represented the motion of particles by the geodesic equation. Einstein also searched for complete descriptions of physical conditions in quantum mechanics. It seems that the two-body problem in general relativity was a heuristic guide in the search of a solution to the problem that the psi function cannot be interpreted as a complete description of a physical condition of one system. He thus proposed the EPR paradox with Rosen and Podolsky.

Updated 2016

My book: Einstein’s Pathway to the Special Theory of Relativity

2015 marks several Albert Einstein anniversaries: 100 years since the publication of Einstein’s General Theory of Relativity, 110 years since the publication of the Special Theory of Relativity and 60 years since his passing.

G2

What is so special about this year that deserves celebrations? My new book on Einstein: Einstein’s Pathway to the Special Theory of Relativity has just been returned from the printers and I expect Amazon to have copies very shortly.

img_4153b

The Publisher uploaded the contents and intro.

Cam

I hope you like my drawing on the cover:

Ein

Einstein, 1923: “Ohmmm, well… yes, I guess!”

albert-einstein-lg-1

G3

The book is dedicated to the late Prof. Mara Beller, my PhD supervisor from the Hebrew University of Jerusalem who passed away ten years ago and wrote the book: Quantum Dialogue (Chicago University Press, 1999):

images

Have a very happy Einstein year!

A Century of General Relativity מאה שנה ליחסות הכללית

Hebrew University of Jerusalem celebrates the anniversary of Einstein’s General Theory of Relativity (GTR) in a four-day conference:

Space-Time Theories: Historical and Philosophical Contexts

Monday-Thursday, January 5-8, 2015, in Jerusalem, the van Leer Jerusalem Institute. The conference brings together physicists, historians and philosophers of science from Israel and the world, all working from different perspectives on problems inspired by GTR. It is the first among three conferences planned to celebrate the centenary of Einstein’s General Theory of Relativity, the last of which will take place in the Max Planck Institute in Berlin on December 5, 2015, my next birthday. I am not on the list of speakers of the conference, but it says that admission is free.

בין ה-5-8 לינואר 2015 יתקיים כנס לציון 100 שנה להולדת תורת היחסות הכללית של איינשטיין. הכנס יתקיים במכון ואן ליר בירושלים ליד בית הנשיא. בכנס יישאו דברים היסטוריונים ופילוסופים של המדע שעוסקים בתחום וכן פיסיקאים. הוא הכנס הראשון מבין שלושה שמאורגנים בתחום. הראשון מאורגן באוניברסיטה העברית והאחרון במכון מקס פלאנק: יתקיים בדיוק בעוד שנה ביום ההולדת הבא שלי ב-5 לדצמבר, 2015. אני אמנם לא ברשימת הדוברים של הכנס בירושלים, אבל המודעה מציינת שהכניסה חופשית. בכנס הקודם מ-2005, שציין מאה שנים להולדת תורת היחסות הפרטית של איינשטיין במכון ואן ליר, זכורים היטב דברי הפתיחה של הנשיא ד’אז משה קצב

einstein

Einstein wrote Max Born on May 12, 1952:

“The generalization of gravitation is now, at last, completely convincing and unequivocal formally unless the good Lord has chosen a totally different way of which one can have no conception. The proof of the theory is unfortunately far too difficult for me. Man is, after all, only a poor wretch… Even if the deflection of light, the perihelial movement or line shift were unknown, the gravitation equations would still be convincing because they avoid the inertial system (the phantom which affects everything but is not itself affected). It is really rather strange that human beings are normally deaf to the strongest arguments while they are always inclined to overestimate measuring accuracies”.

What did Einstein mean by saying “the gravitation equations would still be convincing…”? “In June 9, 1952 Einstein wrote an appendix to the fifteenth edition of his popular 1917 book Über die spezielle und die allgemeine Relativitätstheorie Gemeinverständlich (On the Special and the General Theory of Relativity). In this appendix he explained:

“I wished to show that space-time is not necessarily something to which one can ascribe a separate existence, independently of the actual objects of physical reality. Physical objects are not in space, but these objects are spatially extended. In this way the concept “empty space” loses its meaning”.

Einstein and 1915 General Relativity

My new paper shows that a correction of one mistake was crucial for Einstein’s pathway to the first version of the 1915 general theory of relativity, but also might have played a role in obtaining the final version of Einstein’s 1915 field equations. In 1914 Einstein wrote the equations for conservation of energy-momentum for matter, and established a connection between these equations and the components of the gravitational field. He showed that a material point in gravitational fields moves on a geodesic line in space-time, the equation of which is written in terms of the Christoffel symbols. By November 4, 1915, Einstein found it advantageous to use for the components of the gravitational field, not the previous equation, but the Christoffel symbols. He corrected the 1914 equations of conservation of energy-momentum for matter. Einstein had already basically possessed the field equations in 1912 together with his mathematician friend Marcel Grossman, but because he had not recognized the formal importance of the Christoffel symbols as the components of the gravitational field, he could “not obtain a clear overview”. Finally, considering the energy-momentum conservation equations for matter, an important similarity between equations suggests that, this equation could have assisted Einstein in obtaining the final form of the field equations (the November 25, 1915 ones) that were generally covariant.

My new paper on general relativity

Eisntein