My new book: Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)

cover

My new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) is coming out in August 2017.

My new book is a comprehensive monograph on Albert Einstein’s Odyssey to Special and General Relativity.

It is the second edition of my first book, Einstein’s Pathway to the Special Theory of Relativity:

Picture1

The book brings together the most recent studies regarding the discovery of Special Relativity between 1895 and 1905 and pertaining to the genesis of General Relativity between 1905 and 1918.

The book encompasses an in-depth historiographical analysis of Einstein’s theory of relativity and Einstein’s own derivations and philosophical perspectives of Einstein’s work.

The first chapter provides a narrative of Einstein’s early life until 1914 without resorting to hagiography.

The second chapter discusses Fin de siècle physics.

The third chapter deals with Einstein’s path to the Special Theory of Relativity and Henri Poincaré’s Dynamics of the Electron.

The fourth chapter focuses on the genesis of the General Theory of Relativity from 1905 until approximately 1922.

The fifth chapter centralizes on Einstein’s methodology and creativity, and on Poincaré’s philosophy.

The final chapter analyzes the sources.

The book is 660 pages long, a comprehensive study of Einstein’s discovery of special and general relativity and of Einstein’s cosmology.

I drew the cover of the book.

Einstein loved sailing and he owned a sailboat, which he called Tümmler (porpoise).

AE-Tuemmler1

The cover of my new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) shows Einstein, the young patent clerk wearing the patent office suit, the young man and the sea.

book3-1

 

 

The centenary of Einstein’s General Theory of Relativity

Einstein’s first big project on Gravitation in Berlin was to complete by October 1914 a summarizing long review article of his Einstein-Grossmann theory. The paper was published in November 1914. This version of the theory was an organized and extended version of his works with Marcel Grossmann, the most fully and comprehensive theory of gravitation; a masterpiece of what would finally be discovered as faulty field equations.

albert-einstein-lg-1

On November 4, 1915 Einstein wrote his elder son Hans Albert Einstein, “In the last days I completed one of the finest papers of my life; when you are older I’ll tell you about it”. The day this letter was written Einstein presented this paper to the Prussian Academy of Sciences. The paper was the first out of four papers that corrected his November 1914 review paper. Einstein’s work on this paper was so intense during October 1915 that he told Hans Albert in the same letter, “I am often so in my work, that I forget lunch”.

Einstein

In the first November 4 1915 paper, Einstein gradually expanded the range of the covariance of his field equations. Every week he expanded the covariance a little further until he arrived on November 25 1915 to fully generally covariant field equations. Einstein’s explained to Moritz Schlick that, through the general covariance of the field equations, “time and space lose the last remnant of physical reality. All that remains is that the world is to be conceived as a four-dimensional (hyperbolic) continuum of four dimensions” (Einstein to Schlick, December 14, 1915, CPAE 8, Doc 165) John Stachel explains the meaning of this revolution in space and time, in his book: Stachel, John, Einstein from ‘B’ to ‘Z’, 2002; see p. 323).

Albert Einstein as a Young Man

These are a few of my papers on Einstein’s pathway to General Relativity:

http://xxx.tau.ac.il/abs/1201.5352

http://xxx.tau.ac.il/abs/1201.5353

http://xxx.tau.ac.il/abs/1201.5358

http://xxx.tau.ac.il/abs/1202.2791

http://xxx.tau.ac.il/abs/1202.4305

http://xxx.tau.ac.il/abs/1204.3386

http://xxx.tau.ac.il/abs/1309.6590

http://xxx.tau.ac.il/abs/1310.1033

http://xxx.tau.ac.il/abs/1205.5966

http://xxx.tau.ac.il/abs/1310.2890

http://xxx.tau.ac.il/abs/1310.6541

Stay tuned for my next centenary of GTR post!

Albert Einstein’s cosmological model

I find the following new paper “Einstein’s steady-state model of the universe” very interesting. The authors present a translation and analysis of an unpublished manuscript by Albert Einstein in which he proposed a “steady-state” model of the universe. They show that the manuscript appears to have been written in early 1931, and demonstrate that Einstein once considered a cosmic model in which the mean density of matter in an expanding universe remains constant due to a continuous creation of matter from empty space, a process he associated with the cosmological constant. x

18_M_library

Einstein, Hubble, Michelson, Campbell, Adams, and others. Einstein wrote the equation: Is Ricci tensor zero in all components? on the blackboard in the library of the Mount Wilson Observatory in Pasadena, California, Jan. 1931. Here

In 1922, Aleksandr Friedmann published a dynamical universe model. Friedmann discovered non-static models with a cosmological constant equal to zero or not equal to zero. This was a prediction of an expanding or a contracting universe of which Einstein’s (static) and de Sitter worlds were special cases. Friedmann’s model with a cosmological constant equal to zero was the simplest general relativity universe. See my paper

In 1929 Edwin Hubble announced the discovery that the actual universe is apparently expanding. In the years beyond 1930, the tide turned in favor of dynamical models of the universe. The discovery was hailed as fulfilling the prediction of general relativity. In January 1931 Einstein became aware of this revolution during a visit to Caltech in Pasadena. Einstein discussed his general theory of relativity and cosmological model at length with Richard Tolman and Hubble, and viewed the skies through the colossal telescope at Mount Wilson. Hubble accompanied Einstein while he examined evidence that demonstrated that the universe was expanding. Upon his return to Berlin the new experimental and theoretical findings have led Einstein to drop his old suggestions in favor of new ones, the dynamical universe. x

Einstein found that models of the expanding universe could be achieved without any mention of the cosmological constant. In April 1931 Einstein published his new findings in a short paper, “On the Cosmological problem of General Relativity”; in this paper he studied Friedmann’s non-static solution of the field equations of the general theory of relativity, of which the line element corresponded to a cosmological constant equal to zero. x

In an August 1931 paper De Sitter adopted this line element with a cosmological constant equal to zero. A few months later, on January 1932, when both De Sitter and Einstein were visiting Mount Wilson Observatory, they wrote a joint paper in which they presented the Einstein-De Sitter universe following Einstein’s lead without the cosmological term. See my paper

imagesDNXANH8P

Einstein writes the equation: Is Ricci tensor zero in all components? on the blackboard in the library of the Mount Wilson Observatory, Pasadena, California, Jan. 1931. here

The authors of the paper “Einstein’s steady-state model of the universe” found a new manuscript, according to which, in early 1931 Einstein proposed a ‘steady-state’ model of the universe. They claim that this model is in marked contrast to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the well-known steady-state theories of Hoyle, Bondi and Gold. x

Hence, I assume that perhaps sometime between January 1931 (Einstein’s visit to Caltech) and March 1931, Einstein embarked on developing a “steady-state” model, but eventually renounced this idea; in April 1931 he adopted the line element with a cosmological constant equal to zero, Friedmann’s non-static solution. x

The authors of the paper, “Einstein’s steady-state model of the universe”, write that Einstein’s steady-state model contains a fundamental flaw and suggest it was discarded for this reason. x

It is reasonable to assume that Einstein had renounced the “steady-state” model before April 1931, and then he was ready to publish his April 1931 paper. Einstein dropped the cosmological term publicly and returned to the unmodified field equations of general relativity, and accepted Friedmann’s model with a cosmological constant equal to zero. x

Why did Einstein consider a “steady-state” model of the universe? it seems that the authors do not consider Mach’s principle. Einstein invented a finite and spatially closed static universe, bounded in space (and introduced the cosmological constant for this purpose), according to the idea of inertia having its origin in an interaction between the mass under consideration and all of the other masses in the universe, which he called “Mach’s ideas”, later called, “Mach’s principle”.

Mach’s Principle was of utmost importance to Einstein. Later Hermann Bondi and Thomas Gold came up with the idea of a steady-state theory of the expanding universe. They were fascinated by Mach’s principle, and spoke about the difficulties “concerned with the absolute state of rotation of a body. Mach examined this problem very thoroughly and all the advances in theory which have been made have not weakened the force of his argument. According to ‘Mach’s Principle’ inertia is an influence exerted by the aggregate of distant matter which determines the state of motion of the local frame of reference by means of which rotation of acceleration is measured…. …. The stationary character of the universe permits us to assume very strong interactions and yet to have permanent laws of nature. Only in this way can Mach’s principle be truly satisfied…” See my paper 

Albert Einstein Traveling with His Wife

(Iranian piece on Einstein)