My new book: Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)

cover

My new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) is coming out in August 2017.

My new book is a comprehensive monograph on Albert Einstein’s Odyssey to Special and General Relativity.

It is the second edition of my first book, Einstein’s Pathway to the Special Theory of Relativity:

Picture1

The book brings together the most recent studies regarding the discovery of Special Relativity between 1895 and 1905 and pertaining to the genesis of General Relativity between 1905 and 1918.

The book encompasses an in-depth historiographical analysis of Einstein’s theory of relativity and Einstein’s own derivations and philosophical perspectives of Einstein’s work.

The first chapter provides a narrative of Einstein’s early life until 1914 without resorting to hagiography.

The second chapter discusses Fin de siècle physics.

The third chapter deals with Einstein’s path to the Special Theory of Relativity and Henri Poincaré’s Dynamics of the Electron.

The fourth chapter focuses on the genesis of the General Theory of Relativity from 1905 until approximately 1922.

The fifth chapter centralizes on Einstein’s methodology and creativity, and on Poincaré’s philosophy.

The final chapter analyzes the sources.

The book is 660 pages long, a comprehensive study of Einstein’s discovery of special and general relativity and of Einstein’s cosmology.

I drew the cover of the book.

Einstein loved sailing and he owned a sailboat, which he called Tümmler (porpoise).

AE-Tuemmler1

The cover of my new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) shows Einstein, the young patent clerk wearing the patent office suit, the young man and the sea.

book3-1

 

 

Advertisements

The Road to Relativity and Dishonesty in Scientific Research

Prof. Hanoch Gutfreund, the former president of the Hebrew University of Jerusalem, has been plagiarizing my papers and book. To call prof. Gutfreund prolific in plagiarizing my work would be an understatement. The serious damages I sustain from this in Israel are enormous, actually it is far more damaging than I previously thought. I wrote to the president of the Hebrew University in Jerusalem but the latter has not even answered my email. Hence it seems he fails to take responsibility for damage caused by plagiarism. I am not surprised.

In the book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity” (an annotated facsimile of Einstein’s original handwritten manuscript on general relativity and explanation of Einstein’s manuscript and equations), co-authored by prof. Jürgen Renn, prof. Gutfreund writes:

cosmo

Prof. Gutfreund has picked this passage with only slight changes from my 2013 paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013.

My name is not mentioned in note 4:

notes

Compare the above paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity, to the abstract of my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life”:

gamow2

gamow

And compare the penultimate paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized my paper, received the citations.

Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016: “An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

Gamow

It is quite obvious the Prof. Gutfreund has effectively paraphrased the passage from my paper. On November 30, 2015,  Prof. Gutfreund said in his plenary lecture, “100 years of General Relativity – What are we Celebrating?” At the Berlin Conference: A Century of General Relativity:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

My second bookGeneral Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists (published on December 1, 2015) has a whole chapter dedicated to Einstein’s “biggest blunder”. This chapter is based on my 2013 ArXiv paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

gut3

Hence, plagiarism of my 2013 paper on Albert Einstein and George Gamow causes damage to my second book and to my academic status.

In addition, Prof. Gutfreund writes in The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity”:

gut

A circle around the origin of coordinates is a rotating disk (in his 1916 paper “The Foundation of General Relativity”, Einstein calls the disk “a circle around the origin”).

In the preceding passage prof. Gutfreund have paraphrased a passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

disk1

 

disk2

and from my 2014 paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014 [Equation (70) is my equation (6) and equation (71) is my equation (11)]:

gut2

Towards the end of his 1916 paper, “The Foundation of General Relativity”, Einstein demonstrates that the gravitational field changes spatial dimensions and the clock period. However, nowhere does Einstein directly relate the rotating disk story to the  above derivation. I have invoked this interpretation of Einstein’s paper. Einstein writes:

Ein5 Ein4

Digital Einstein

On November 30, 2015, Prof. Gutfreund lifted another passage from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story” and changed a word here and there, in his plenary lecture, “100 years of General Relativity – What are we Celebrating? at the Berlin Conference: A Century of General Relativity:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

In the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014, I wrote:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

He could have though picked the idea from my 2012 paper, Weinstein, Galina, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild.jpg

Einstein’s equations in his 1916 paper, “The Foundation of General Relativity”:

Schwartz1

Schwartz2

Schwartz3

In my book, General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists  I have also developed my previous ideas from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”.

 

 

 

 

 

My work has been plagiarized at the Century of General Relativity conference

conference Berlin

You often think that if your papers and books are good, conferences all around the world will invite you to present them. How can you measure how influential your work is? The answer is simple: The more your papers are interesting, the greater the odds become you will not be invited to conferences, and your papers will be plagiarized at a conference by a professor extraordinarius. He will present your work as his own and use your ideas without mentioning your name in his conference speech. Can you imagine your reaction to later hearing his lecture on the web site of the Max Planck Institute for the History of Science in Berlin? “Oh my, these are my words! This cannot be true!” The organizers of the Berlin Century of General Relativity and MPIWG conference  failed to invite me to lecture at this international conference to celebrate 100 years of general relativity, a conference I should have gone to. But it turns out that my work on Einstein is so influential that professor Hanoch Gutfreund from the Hebrew University of Jerusalem gave the main or plenary evening lecture at the Century of General Relativity conference, “100 years of General Relativity – What are we Celebrating?”, and he made use in his lecture of passages I wrote two and four years ago and failed to mention my name. He has plagiarized content from my papers for his lecture. “O human race, born to fly upward, wherefore at a little wind dost thou so fall?” Dante Alighieri. I always felt there was something special in my papers because 10,000 people have downloaded my work. However, I don’t exactly feel flattered. I’m grossed out! I am completely disappointed. People have their head in the sand when my work is plagiarized in a big conference.

רן

קוראים 10000

The comparison between the original, my work, and citations from Prof. Gutfreund’s talk will speak for itself.

ג2

Professor Hanoch Gutfreund’s lecture presented Einstein’s road to general relativity (the genesis of general relativity) and the formative years of general relativity (a term coined by Prof. Gutfreund and Prof. Jürgen Renn). Six times he lifted ideas, phrases and lines from my work.

1. Einstein does not use the Schwarzschild Solution in his 1916 Review Paper.

Professor Gutfreund speaks about things Einstein could have done: “He could have done it… we know that he could have done it”. In this respect he mentions Einstein and the Schwarzschild solution:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

ג3

ג4

It seems Prof. Gutfreund have picked the above passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild

Einstein’s 1916 Equations:

Schwartz1

Schwartz2

Schwartz3

In addition, the above passage from prof. Gutfreund’s speech had been previously explained in great detail in my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, published in 2014. A year before Prof. Gutfreund’s lecture at the Century of General Relativity conference in Berlin, I wrote in the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv: 1411.7370v [physics.hist-ph], 26 Nov, 2014:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

I demonstrate in my paper that in his 1916 review paper, “The Foundation of the General Theory of Relativity”, Einstein used Huygens principle and the first order approximate solution to his vacuum field equations from the November 18, 1915 perihelion of Mercury paper to derive bending of light, the deflection of a ray of light passing by the sun. I end my paper by saying: “Einstein ended his paper with the final equation from his November 18 paper, the equation for the perihelion advance of Mercury in the sense of motion after a complete orbit. And he only mentioned in a footnote, ‘With respect to the calculation, I refer to the original treatments’: Einstein’s November 18 paper and Schwarzschild’s 1916 paper”. Here are two paragraphs from my own paper:

שוורצשילד1

שוורצשילד2

I wrote above: “In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity, “The Foundation of the General Theory of Relativity”. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution (8) to Einstein’s November 18, 1915 field equations. Even so, in his 1916 paper, Einstein preferred not to base himself on Schwarzschild’s exact solution… and he returned to his first order approximate solution (6) from his November 18, 1915 paper”.

ג1

Einstein preferred in his 1916 review paper to write his November 18, 1915 approximate solution upon the Schwarzschild exact solution because he objected to the “Schwarzschild singularity”. Einstein repeatedly spoke against the Schwarzschild singularity and stated the impossibility of the Schwarzschild singularity.

2. Einstein and the Riemann tensor.

In his talk Professor Gutfreund concentrated on Einstein’s mistakes. In describing Einstein’s mistakes prof. Gutfreund said:

“The Riemann tensor is not a tensor of curvature. There is no affine connection. There is no parallel transport, all that, all the geometrization that is the trademark of the whole theory, that was not a presupposition that led him to the final results. He could have done it, maybe in another step. How could we know that he could have done it?

In 1914 he wrote another review article that was the review article of the Entwurf theory, a long article, he wrote it when he was confident that this was the correct theory; and there where he gets to the point where he has to explain covariant differentiation, he makes a remark: I know that Levi-Civita told us how to do it this way, but I prefer to do it differently, and this differently is abominable. I can tell you. If you look at the text how it is done, and when he did his 1916 review [article] he followed almost word by word except in that chapter where the new Lagrangian has to appear, except there he followed exactly what he did, so he could have done it”.

ג6

To begin with, this explanation combines two unrelated elements. The second part of the above passage seems to represent incorrectly a paragraph from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916”, ArXiv: 1201.5353v1 [physics.hist-ph], 25 January, 2012. In 2012 I sent this paper to prof. Gutfreund.

The opening remarks of my paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916” (pp. 1-2), deal with Einstein’s 1914 review article and the comment he later made. Einstein had published a comprehensive review article dealing with his Entwurf  theory. On page 1041, he presented the Ricci tensor. On pages 1042 he found a problem with the Ricci tensor. Evidently he did not yet realize that the solution was to restrict himself to unimodular transformations. On page 1053 he presented the Riemann-Christoffel tensor. He did not use this tensor in his 1914 Entwurf field equations. That was the reason why the presentation of this tensor in 1914 was very brief. Of course the reason was also page 1041. In his first talk on the general theory of relativity (November 4, 2015), Einstein postulated that only unimodular transformations were allowed. This solved the problem with the 1914 Ricci tensor (page 1041). He wrote the Riemann-Christoffel tensor, obtained the Ricci tensor G and a gravitational tensor R. The field equations were restricted to unimodular transformations. He then wrote the following remark: the Ricci and Levi-Civita fundamental tensor of page 1041 could be written in a different form, it could be obtained from the Riemann-Christoffel tensor. He explained that he had given this proof in his 1914 paper on page 1053 and had followed this root in 1912 in the Zurich Notebook. Hence, Einstein made the remark (comment) – not in the 1914 Entwurf paper – but rather in the November 4, 1915 paper; and the remark referred to the field equations formulated in a non-Lagrangian form. I explain this in my 2012 paper:

2012-1

2012-2

The first part of Prof. Gutfreund’s explanation represents Prof. John Stachel’s memorable phraseology, the importance of “the affine connection”. Prof. Stachel explains that until 1912, Einstein lacked the Riemanian geometry and the tensor calculus as developed by the turn of the century, i.e., based on the concept of the metric tensor; and after 1912 when he was using these, he then lacked more advanced mathematical tools (the affine connection); these could be later responsible for inhibiting him for another few years. Judged from the historical point of view of his time, Einstein did not make a mistake, because he lacked the appropriate mathematical tools. Actually with hindsight the story is more complicated. What was eventually mere coincidence for Einstein would later turn to be a consequence derived by new mathematical tools, the affine connection, which was invented after Einstein had arrived at generally covariant field equations. (See Stachel, John, Einstein from ‘B’ to ‘Z’, 265, 304-306.

The above explanation is from my paper: “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, ArXiv: 1202.2791v1 [physics.hist-ph], 13 February, 2012, p. 20):

stachel

Finally, following the November 4, 1915 field equations, Einstein wrote the 1914 Entwurf Lagrangian and adjusted in 1915 and in 1916 his Entwurf 1914 variational formalism. In section 12 of the 1916 review article, Einstein started from the 1914 equations he had written on page 1053, he contracted the Riemann-Christoffel tensor and obtained the Ricci tensor and the field equations in unimodular coordinates; he also wrote the field equations in Lagrangian form.

In my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012, I pinpoint the differences and similarities between Einstein’s first 1914 review paper and second 1916 review paper, “The Foundation of the General Theory of Relativity”. I discuss the differences and similarities among Einstein’s 1914 and 1916 formulations and Einstein’s 1916 manuscript “The Foundation of the General Theory of Relativity” and 1916 review paper, “The Foundation of the General Theory of Relativity”.

3. Friedmann’s model and Einstein’s reaction to it.

Towards the end of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund lifted phrases from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, ArXiv: 1309.6590v [physics.hist-ph], 26 Sep. 2013.

In 1922, Alexander Friedman published a model of an expanding universe. Einstein was not satisfied with this model and replied by a note; he thought he found a mistake in Friedmann’s results, which when corrected Friedmann’s solution would give Einstein’s good old static model. Friedmann sent Einstein his calculations and asked him to publish a correction to his statement. Einstein was willing to correct the slip in his previous note. Prof. John Stachel discovered that in the draft to the note to the editor Einstein wrote something quite different.

Prof. Gutfreund explained in his lecture:

“But here we have you see the letter, the letter to the editor, the angry letter. You see the last sentence is crossed out. So I will tell you what is it the last sentence. The last sentence says ‘It follows that the field equations, besides the static solution’, there are such static solution and so on. But then what is crossed out is ‘but a physical significance can hardly be attributed to them’.”.

And Professor Gutfreund showed the following slide:

“It follows that the field equations, besides the static solutions, permit dynamic (that is varying with time coordinates) spherically symmetric solutions for the spatial structure. He added the words: ‘but a physical significance can hardly be ascribed to them’, which he crossed out before sending the note to the editor”.

snake3

I see phrases here that come from my work and Prof. Stachels’ bookEinstein from B to Z, 2002, for which there is no attribution. I recognize my own words: “but a physical significance can hardly be ascribed to them”. Prof. Stachel wrote: “to which a physical significance can hardly be ascribed”. Hence, prof. Gutfreund did not even bother to read prof. Stachel’s original paper; he simply lifted phrases from my paper. His above citation and slide contain exact words from my own published paper but he does not give attribution to me. I wrote in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” the following:

פרידמן

snake

Therefore, in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote the following (pp. 39-40):

“Einstein was willing to correct the slip in his previous note: ‘In my previous note I have criticized the cited work [Friedmann’s 1922 work, ‘On the curvature of Space’], but my objection, as I became convinced by Friedmann’s letter communicated to me by Mr. Krutkov, rested on an error in my calculations. I consider that Mr. Friedmann’s results are correct and shed new light. It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure’. 126

In fact, Einstein was little impressed by Friedmann’s mathematical models. In Einstein’s draft of the second note to the Zeitschrift für Physik, in which he withdrew his earlier objection to Friedmann’s dynamical solutions to the field equations, he crossed-out the final last section of the sentence, ‘a physical significance can hardly be ascribed to them’, before sending the note to the editor of the Zeitschrift für Physik, thus Einstein originally wrote in the draft: ‘It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, but a physical significance can hardly be ascribed to them’.127”.

I placed the endnotes at the end of my paper. Footnotes and endnotes are a bother to read and are rarely read. People abstain from reading endnotes. However, endnote 126 refers to Einstein’s (German) paper and endnote 127 in the above passage refers to the paragraph from Prof. Stachel’s paper, “Eddington and Einstein”, Einstein from ‘B’ to ‘Z’, p. 469:

Friedmann

Prof. Stachel writes:

“Friedmann’s paper came to Einstein’s attention. He thought he had found a mathematical flow in Friedmann’s argument, and said so in print. When he became convinced that the error was his not Friedmann’s, he retracted his mathematical objection, but stuck to his static cosmological model. How little impressed he was by Friedmann’s models can be seen from the final clause of his draft retraction, which (fortunately for him) Einstein deleted before it was printed:

It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, [to which a physical significance can hardly be ascribed.],

The bracketed portion being crossed out in the manuscript”.

Compare prof. Gutfreund’s slide to the passage from my 2013 paper. Professor Gutfreund uses my phrases verbatim in his slide with no citation:

גוטפרוינד

Surely prof. Gutfreund did not read my endnote 127, otherwise he would have mentioned prof. John Stachel’s paper in his lecture, because when there is acknowledgment in prof. Gutfreund’s talk, the impression is of a wholesale attribution to prof. Jürgen Renn and other notable Einstein scholars. This is far from being the only sources for professor Gutfreund’s lecture. Indeed, in his lecture he mentions prof. John Stachel’s paper on Hilbert’s competition with Einstein (priority dispute) written with prof. Jürgen Renn and prof. Leo Corry, while discussing Einstein’s competition with David Hilbert:

“He was concerned that he will be outrun, and was concerned that he will be outrun by David Hilbert; and the question is who gets there first. Now had Einstein read the article by Jürgen Renn, and John Stachel and Leo Corry, he wouldn’t have to worry”.

Hilbert2 4. Demarcation between “Mach’s idea” and ‘Mach’s principle”

After presenting the genesis of general relativity, prof. Gutfreund briefly reviewed Mach’s principle. Here I highlight what I see as plagiarized demarcation between “Mach’s idea” and “Mach’s principle”. This demarcation is found in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” and in my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”. I also briefly discuss this matter in my first book, Einstein’s Pathway to the Special Theory of Relativity.

In his lecture Prof. Gutfreund explained:

“So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. Now at the outset I want to tell you that everything that Einstein did in those years in this context and in other until 1929, and maybe over, it was a little longer, was to defend his strong belief in Mach’s criticism of Newton. Mach’s criticism, I mean there is no absolute space, all inertial effects are due to all the masses in the universe, there is no inertia, except determined by all the masses of the universe. This is Mach’s idea. I am not calling it a principle yet. This is Mach’s idea ….”

When prof. Gutfreund explained the difference between Mach’s idea and Mach’s principle, he raised his hand and pointed his finger to the audience:

finger

Mach3

Professor Gutfreund then spoke about Einstein’s exchange of letters with de Sitter, Felix Klein and Hermann Weyl and said:

“And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”.

And he showed the following slide:

Mach's ideas

In my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I demarcated between “Mach’s ideas” and “Mach’s Principle”:

Mach's idea

I Therefore write:

“Einstein desired to eliminate what he called the “epistemological weakness” [“erkenntnistheoretischen Schwächen”] of Newtonian mechanics, the absolute space, from physics; he invented a world, finite and spatially closed static universe, bounded in space, according to the idea of inertia having its origin in an interaction between the mass under consideration and all of the other masses in the universe, which he called “Mach’s ideas” (obviously not Ernst Mach’s ideas as has been generally recognized and as Mach himself pronounced them). This would be later called by Einstein “Mach’s principle” (more precisely Mach-Einstein principle)”.

In my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, I explain on page 22 the difference between “Mach’s idea” and Mach’s principle”:

Mach2

I therefore write:

“Einstein ended section §1 with the conclusion that the momentum and kinetic energy are inversely proportional to c. Or, the inertial mass is m/c and independent of the gravitational potential.116 This conforms to Mach’s idea that inertia has its origin in an interaction between the mass point under consideration and all of the other mass points. Einstein explained that if other masses are accumulated in the vicinity of the mass point, the gravitational potential c decreases. And then the quantity m/c increases which is equal to the inertial mass. In the static fields theory Einstein presented the predecessor to Mach’s principle.117“.

In my book, Einstein’s Pathway to the Special Theory of Relativity I again say:

Machbook

Prof Gutfreund says: “So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. … And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”. And he presents the above slide.

In my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” I wrote the following:

Mach's ideas3.jpg 5. Besso as Einstein’s Sounding Board

Quite at the beginning of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund borrowed passages from my 2012 paper, “Albert Einstein’s Methodology”. Prof Gutfreund said in his lecture:

“Einstein with his very good friend usually a sounding board, in this case, a collaborator, in this case when they worked together. Usually he was Einstein’s sounding board. They wrote… the Einstein-Besso manuscript… and in that document they calculated the perihelion motion”.

Besso3

My own words in “Albert Einstein’s Methodology” are:

Besso0

 

Besso1

The Philosophy of Science Portal added a link to my paper, “Albert Einstein’s Methodology”.

Hence, in my 2012 paper, “Albert Einstein’s Methodology”, ArXiv: 1209.5181v1 [physics.hist-ph], 25 September, 2012, I write:

“Later in 1913 Besso came to Zurich and actively participated in solving the Einstein-Grossman (‘Entwurf’) gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of the perihelion of Mercury. The young Einstein may have considered Besso as his sounding board, but was Besso still Einstein’s sounding board in 1913?”

I explain in my paper that in 1913, Besso still functioned as Einstein’s sounding board while they were both working on the Einstein-Besso manuscript:

“Indeed when Einstein wrote Besso a series of letters between 1913 and 1916, and described to him step by step his discoveries of General Relativity, Besso indeed functioned again as the good old sounding board as before 1905”.

I also wrote about Besso in my book, Einstein’s Pathway to the Special Theory of Relativity, April 2015:

Besso

Therefore, in my book, Einstein’s Pathway to the Special Theory of Relativity (Newcastle, UK: Cambridge Scholars Publishing), April 2015, I have dedicated a whole chapter to Einstein’s “sounding boards”. In the section explaining Michele Besso’s role as Einstein’s sounding board I write:

“Even in 1913, Besso was still Einstein’s sounding board. In June 1913, Besso visited Einstein in Zurich and actively participated in solving the Einstein-Grossmann Entwurf gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of mercury’s perihelion in the field of a static sun. Their join work is known as the Einstein-Besso manuscript”.

Prof. John Stachel was the first to show that Michele Besso acted as Einstein’s sounding board. The need to put ideas into communicable form led Einstein to search throughout his early life for people to act as sounding boards for his ideas. See his book: Einstein’s Miraculous Year. Five Papers that Changed the Face of Physics (Princeton: Princeton University Press). Following discussions with prof. Stachel I have extended his ideas into the above expression.

I really hoped that some conference would ask me to give a talk about my work, “Albert Einstein’s Methodology”. I thought I had a philosophical paper worth talking about at a conference. Obviously, now that prof. Gutfreund lifted my unique expression of prof. Stachel’s idea of sounding boards from this paper there is no point presenting it at a conference.

6. Cosmological Constant Biggest blunder

A thread that runs through Professor Gutfreund’s entire talk is that Einstein had made many mistakes on his road to general relativity and cosmological model. Towards the end of his talk prof. Gutfreund mentions Einstein’s biggest mistake:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

In prof. Gutfreund’s book with prof. Jürgen Renn, The Road to Relativity, prof. Gutfreund further explains this:

cosmo

notes

Compare the above paragraph from prof. Gutfreund’s book The Road to Relativity to the abstract of my 2013 paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013:

gamow

gamow2

And compare the penultimate paragraph from prof. Gutfreund’s book The Road to Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized the abstract of my paper, received the citations. Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016:

“An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

cite

Gamow

cheers

The audience of prof. Gutfreund’s lecture, “100 Years of General Relativity – What Are We Celebrating?”, consisted of top experts and known professors in my field. They clapped and cheered when he finished to speak. They seemed to like his lecture. I wish they knew that parts of professor Hanoch Gutfreund’s lecture were based on my papers and I worked so hard to write them.

7. David Hume and Ernst Mach’s influence on Einstein

At the Thursday round table speech Prof. Gutfreund seems to also lifted something from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”. At the Berlin MPIWG conference round table discussion about general relativity, professor Gutfreund explained:

“But then in his [Einstein’s] Autobiographical Notes his most, I mean this is for the philosophers of science here, may be his most blant [blatant], most explicit departure from empiricism, you know until almost end he always mentions Mach together with Hume. The two of them who showed him the way to general relativity. I quote”.

manspla

“I mean this is for the philosophers of science here”, Prof. Gutfreund said while pointing to where the philosopher of science prof. Yemima Ben Menahem was sitting.

Mach and HUme

It is fairly obvious that the explanation about Hume and Mach showing Einstein the way to general relativity was either lifted from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” or from my book, Einstein’s Pathway to the Special Theory of Relativity.

Hume and Mach showing Einstein the way to general relativity is a mistake in my 2013 paper which prof. Gutfreund seems to have reproduced in his round table discussion. Actually, in 1949 Einstein explicitly expressed in his Autobiographical Notes an intellectual debt to Hume and Mach’s philosophical writings in his discovery of special relativity. However, in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote about Hume’s influence on the elder Einstein and I said that Hume’s influence on Einstein was greater than Mach’s ideas (general relativity and cosmology):

Hume

I thus write:

“The elder Einstein could not remember how far Mach’s writings have influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the general theory of relativity. Indeed the elder Einstein often wrote that the influence of David Hume was greater on him. Finally, a year before his death Einstein silently dropped Mach’s principle in itself”.

The philosophy of Hume and Mach had an important influence on Einstein’s development and discovery of special relativity. Mach’s ideas about the relativity of inertia influenced Einstein on his road to general relativity. If Professor Gutfreund “quotes”, then I shall quote as well. Einstein writes in his Autobiographical Notes (1949, p. 53):

Einst

“One sees that in this paradox [of Einstein chasing a light beam] the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, or of simultaneity, was rooted unrecognized in the unconscious. To recognize clearly this axiom and its arbitrary character already implies the essentials of the solution of the problem. The type of critical reasoning required for the discovery of this central point was decisively furthered, in my case, especially by the reading of David Hume’s and Ernst Mach’s philosophical writings”.

However, in my first book, Einstein’s Pathway to the Special Theory of Relativity, on page 292, I tried to correct my mistake in my 2013 paper, and I combined the influence of David Hume’s and Ernst Mach’s philosophy on Einstein with Mach’s ideas and Mach’s principle:

Mach's principle

I therefore write in my book:

“The older Einstein could not remember how far Mach’s writings influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the theory of relativity. Indeed, the older Einstein often wrote that David Hume was a greater influence on him. We should remember that in 1948 Einstein saw Mach’s weakness in his belief more or less that science consists in the mere “ordering” of empirical material. Mach, according to Einstein, misjudged the free constructive element in the formation of concepts. He believed that in some sense theories arise by discovery and not invention (Einstein to Besso, January 6, 1948, Einstein and Besso 1971, Letter 153; see Section 1.1). Finally, a year before his death, Einstein silently dropped Mach’s principle in itself…”.

Prof. Gutfreund seems to have combined in his round table discussion my mistake from 2013 and the above so-called correction.

8. Einstein and Poincare.

Finally, it is not the first time that prof. Gutfreund has endorsed my ideas and presented them as his own. In August 2015, at the World Science Conference – Israel (WSCI), young students from all around the world and 15 Nobel laureates were invited to the WSCI conference. Prof. Gutfreund was part of a panel discussion at the WSCI conference on “Eureka moment!”. He happened to be sitting next to Nobel Laureates prof. Arieh Warshel, prof. Harold Kroto and prof. Sidney Altman. Later the Lectures and panels were uploaded to the website of the homepage of the WSCI conference.

I heard prof. Gutfreund speaking about Einstein’s 1916 interview (“exchange of readers” [letters]) with Max Wertheimer. He told the audience about Einstein describing to Wertheimer how the theory of general relativity occurred to him. Actually Wertheimer discussed with Einstein the development of his special theory of relativity and not the genesis of general relativity and the road to general relativity. Prof. Gutfreund spoke about Einstein’s creativity and Poincaré’s creativity and his Eureka moment, something he had read in my book, Einstein’s Pathway to the Special Theory of Relativity. He told the story of Poincaré who could not find the solution to his problem. Poincaré then took part in an excursion. The events of the trip made him forget his mathematical work. He entered a bus; the moment he put his foot on the step, the idea came to him, without anything in his former thoughts seeming to have prepared him for it.

פואנקרה5

Prof. Gutfreund told the audience the following, here is the citation from his lecture:

“Einstein had a very close friendly relationship with Max Wertheimer. Max Wertheimer is one of the founding fathers of gestalt psychology, and they exchanged readers [letters]. Max Wertheimer even wrote a book about creativity and they explored this idea of creativity and debation [debated] time, and then this ha-moment according, so I mean the classical example of an ha-moment again according to his, to Einstein’s testimony is this happiest thought in retrospect. There is another ha-moment, because you see, a ha-moment and Eureka does not have always to be something which turns out to be correct. Einstein had an ha-moment in something which turned out completely wrong at the end, that is something I refer to, one day he writes to Lorentz and this I have a theory which is a dark spot there and the next day he writes I am now completely satisfied that this is true. But that was completely wrong. But the person who really discussed it is another physicist, a polyglot of science and that is Poincaré, and Poincaré describes an ha-moment he was troubling with his idea whether it should be Lobachevski’s geometry, this kind of geometry, Euclidean geometry, and suddenly he gets on a bus and he describes the moment when he puts his foot on the step of the bus and suddenly it all comes to him and he runs home and writes it all. So you don’t have to run naked in the streets in an ha-moment. There are all kind of…”.

Compare this to the following several paragraphs from my own book, Einstein’s Pathway to the Special Theory of Relativity, April 2015. Prof. Gutfreund has lifted the Einstein-Wertheimer-creativity-Poincaré bus story discussion from my own book:

פואנקרה3

פואנקרה

פואנקרה2

 

פואנקרה4

Fools had ne’er less wit in a year, For wise men are grown foppish. They know not how their wits to wear, Their manners are so apish. King Lear, Act 1, scene 4.

FIN

 

 

 

 

 

 

 

The centenary of Einstein’s General Theory of Relativity

Einstein’s first big project on Gravitation in Berlin was to complete by October 1914 a summarizing long review article of his Einstein-Grossmann theory. The paper was published in November 1914. This version of the theory was an organized and extended version of his works with Marcel Grossmann, the most fully and comprehensive theory of gravitation; a masterpiece of what would finally be discovered as faulty field equations.

albert-einstein-lg-1

On November 4, 1915 Einstein wrote his elder son Hans Albert Einstein, “In the last days I completed one of the finest papers of my life; when you are older I’ll tell you about it”. The day this letter was written Einstein presented this paper to the Prussian Academy of Sciences. The paper was the first out of four papers that corrected his November 1914 review paper. Einstein’s work on this paper was so intense during October 1915 that he told Hans Albert in the same letter, “I am often so in my work, that I forget lunch”.

Einstein

In the first November 4 1915 paper, Einstein gradually expanded the range of the covariance of his field equations. Every week he expanded the covariance a little further until he arrived on November 25 1915 to fully generally covariant field equations. Einstein’s explained to Moritz Schlick that, through the general covariance of the field equations, “time and space lose the last remnant of physical reality. All that remains is that the world is to be conceived as a four-dimensional (hyperbolic) continuum of four dimensions” (Einstein to Schlick, December 14, 1915, CPAE 8, Doc 165) John Stachel explains the meaning of this revolution in space and time, in his book: Stachel, John, Einstein from ‘B’ to ‘Z’, 2002; see p. 323).

Albert Einstein as a Young Man

These are a few of my papers on Einstein’s pathway to General Relativity:

http://xxx.tau.ac.il/abs/1201.5352

http://xxx.tau.ac.il/abs/1201.5353

http://xxx.tau.ac.il/abs/1201.5358

http://xxx.tau.ac.il/abs/1202.2791

http://xxx.tau.ac.il/abs/1202.4305

http://xxx.tau.ac.il/abs/1204.3386

http://xxx.tau.ac.il/abs/1309.6590

http://xxx.tau.ac.il/abs/1310.1033

http://xxx.tau.ac.il/abs/1205.5966

http://xxx.tau.ac.il/abs/1310.2890

http://xxx.tau.ac.il/abs/1310.6541

Stay tuned for my next centenary of GTR post!

Albert Einstein’s cosmological model

I find the following new paper “Einstein’s steady-state model of the universe” very interesting. The authors present a translation and analysis of an unpublished manuscript by Albert Einstein in which he proposed a “steady-state” model of the universe. They show that the manuscript appears to have been written in early 1931, and demonstrate that Einstein once considered a cosmic model in which the mean density of matter in an expanding universe remains constant due to a continuous creation of matter from empty space, a process he associated with the cosmological constant. x

18_M_library

Einstein, Hubble, Michelson, Campbell, Adams, and others. Einstein wrote the equation: Is Ricci tensor zero in all components? on the blackboard in the library of the Mount Wilson Observatory in Pasadena, California, Jan. 1931. Here

In 1922, Aleksandr Friedmann published a dynamical universe model. Friedmann discovered non-static models with a cosmological constant equal to zero or not equal to zero. This was a prediction of an expanding or a contracting universe of which Einstein’s (static) and de Sitter worlds were special cases. Friedmann’s model with a cosmological constant equal to zero was the simplest general relativity universe. See my paper

In 1929 Edwin Hubble announced the discovery that the actual universe is apparently expanding. In the years beyond 1930, the tide turned in favor of dynamical models of the universe. The discovery was hailed as fulfilling the prediction of general relativity. In January 1931 Einstein became aware of this revolution during a visit to Caltech in Pasadena. Einstein discussed his general theory of relativity and cosmological model at length with Richard Tolman and Hubble, and viewed the skies through the colossal telescope at Mount Wilson. Hubble accompanied Einstein while he examined evidence that demonstrated that the universe was expanding. Upon his return to Berlin the new experimental and theoretical findings have led Einstein to drop his old suggestions in favor of new ones, the dynamical universe. x

Einstein found that models of the expanding universe could be achieved without any mention of the cosmological constant. In April 1931 Einstein published his new findings in a short paper, “On the Cosmological problem of General Relativity”; in this paper he studied Friedmann’s non-static solution of the field equations of the general theory of relativity, of which the line element corresponded to a cosmological constant equal to zero. x

In an August 1931 paper De Sitter adopted this line element with a cosmological constant equal to zero. A few months later, on January 1932, when both De Sitter and Einstein were visiting Mount Wilson Observatory, they wrote a joint paper in which they presented the Einstein-De Sitter universe following Einstein’s lead without the cosmological term. See my paper

imagesDNXANH8P

Einstein writes the equation: Is Ricci tensor zero in all components? on the blackboard in the library of the Mount Wilson Observatory, Pasadena, California, Jan. 1931. here

The authors of the paper “Einstein’s steady-state model of the universe” found a new manuscript, according to which, in early 1931 Einstein proposed a ‘steady-state’ model of the universe. They claim that this model is in marked contrast to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the well-known steady-state theories of Hoyle, Bondi and Gold. x

Hence, I assume that perhaps sometime between January 1931 (Einstein’s visit to Caltech) and March 1931, Einstein embarked on developing a “steady-state” model, but eventually renounced this idea; in April 1931 he adopted the line element with a cosmological constant equal to zero, Friedmann’s non-static solution. x

The authors of the paper, “Einstein’s steady-state model of the universe”, write that Einstein’s steady-state model contains a fundamental flaw and suggest it was discarded for this reason. x

It is reasonable to assume that Einstein had renounced the “steady-state” model before April 1931, and then he was ready to publish his April 1931 paper. Einstein dropped the cosmological term publicly and returned to the unmodified field equations of general relativity, and accepted Friedmann’s model with a cosmological constant equal to zero. x

Why did Einstein consider a “steady-state” model of the universe? it seems that the authors do not consider Mach’s principle. Einstein invented a finite and spatially closed static universe, bounded in space (and introduced the cosmological constant for this purpose), according to the idea of inertia having its origin in an interaction between the mass under consideration and all of the other masses in the universe, which he called “Mach’s ideas”, later called, “Mach’s principle”.

Mach’s Principle was of utmost importance to Einstein. Later Hermann Bondi and Thomas Gold came up with the idea of a steady-state theory of the expanding universe. They were fascinated by Mach’s principle, and spoke about the difficulties “concerned with the absolute state of rotation of a body. Mach examined this problem very thoroughly and all the advances in theory which have been made have not weakened the force of his argument. According to ‘Mach’s Principle’ inertia is an influence exerted by the aggregate of distant matter which determines the state of motion of the local frame of reference by means of which rotation of acceleration is measured…. …. The stationary character of the universe permits us to assume very strong interactions and yet to have permanent laws of nature. Only in this way can Mach’s principle be truly satisfied…” See my paper 

Albert Einstein Traveling with His Wife

(Iranian piece on Einstein)