My new book: Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)


My new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) is coming out in August 2017.

My new book is a comprehensive monograph on Albert Einstein’s Odyssey to Special and General Relativity.

It is the second edition of my first book, Einstein’s Pathway to the Special Theory of Relativity:


The book brings together the most recent studies regarding the discovery of Special Relativity between 1895 and 1905 and pertaining to the genesis of General Relativity between 1905 and 1918.

The book encompasses an in-depth historiographical analysis of Einstein’s theory of relativity and Einstein’s own derivations and philosophical perspectives of Einstein’s work.

The first chapter provides a narrative of Einstein’s early life until 1914 without resorting to hagiography.

The second chapter discusses Fin de siècle physics.

The third chapter deals with Einstein’s path to the Special Theory of Relativity and Henri Poincaré’s Dynamics of the Electron.

The fourth chapter focuses on the genesis of the General Theory of Relativity from 1905 until approximately 1922.

The fifth chapter centralizes on Einstein’s methodology and creativity, and on Poincaré’s philosophy.

The final chapter analyzes the sources.

The book is 660 pages long, a comprehensive study of Einstein’s discovery of special and general relativity and of Einstein’s cosmology.

I drew the cover of the book.

Einstein loved sailing and he owned a sailboat, which he called Tümmler (porpoise).


The cover of my new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) shows Einstein, the young patent clerk wearing the patent office suit, the young man and the sea.




Some of the topics discussed in my first book, Einstein’s Pathway to the Special Theory of Relativity

People ask questions about Einstein’s special theory of relativity: How did Einstein come up with the theory of special relativity? What did he invent? What is the theory of special relativity? How did Einstein discover special relativity? Was Einstein the first to arrive at special relativity? Was Einstein the first to invent E = mc2?

Did Poincaré publish special relativity before Einstein? Was Einstein’s special theory of relativity revolutionary for scientists of his day? How did the scientific community receive Einstein’s theory of special relativity when he published it? What were the initial reaction in the scientific community after Einstein had published his paper on special relativity?

In my book, Einstein’s Pathway to the Special Theory of Relativity, I try to answer these and many other questions.The topics discussed in my book are the following:

I start with Einstein’s childhood and school days.


I then discuss Einstein’s student days at the Zurich Polytechnic. Einstein the rebellious cannot take authority, the patent office, Annus Mirabilis, University of Bern and University of Zurich, Minkowski’s space-time formalism of special relativity.


Young Einstein, Aarau Class 1896

Additional topics treeated in my book are the following: Fizeau’s water tube experiment, Fresnel’s formula (Fresnel’s dragging coefficient), stellar aberration, and the Michelson and Michelson-Morley Experiments.


Albert Einstein at the Patent office

Mileva Marić and Einstein




Eduard Tete, Mileva Marić and Hans Albert


Einstein’s road to the special theory of relativity: Einstein first believes in the ether, he imagines the chasing a light beam thought experiment and the magnet and conductor thought experiment. Did Einstein respond to the Michelson and Morley experiment? Emission theory, Fizeau’s water tube experiment and ether drift experiments and Einstein’s path to special relativity; “The Step”.


Henri Poincaré’s possible influence on Einstein’s road to the special theory of relativity.


Einstein’s methodology and creativity, special principle of relativity and principle of constancy of the velocity of light, no signal moves beyond the speed of light, rigid body and special relativity, the meaning of distant simultaneity, clock synchronization, Lorentz contraction, challenges to Einstein’s connection of synchronisation and Lorentz contraction, Lorentz transformation with no light postulate, superluminal velocities, Laue’s derivation of Fresnel’s formula, the clock paradox and twin paradox, light quanta, mass-energy equivalence, variation of mass with velocity, Kaufmann’s experiments, the principles of relativity as heuristic principles, and Miller ether drift experiments.


The book also briefly discusses general relativity: Einstein’s 1920 “Geometry and Experience” talk (Einstein’s notion of practical geometry), equivalence principle, equivalence of gravitational and inertial mass, Galileo’s free fall, generalized principle of relativity, gravitational time dilation, the Zurich Notebook, theory of static gravitational fields, the metric tensor, the Einstein-Besso manuscript, Einstein-Grossmann Entwurf theory and Entwurf field equations, the hole argument, the inertio-gravitational field, Einstein’s general relativity: November 1915 field equations, general covariance and generally covariant field equations, the advance of Mercury’s perihelion, Schwarzschild’s solution and singularity, Mach’s principle, Einstein’s 1920 suggestion: Mach’s ether, Einstein’s static universe, the cosmological constant, de Sitter’s universe, and other topics in general relativity and cosmology which lead directly to my second book, General Relativity Conflict and Rivalries.


My books


My book: Einstein’s Pathway to the Special Theory of Relativity

2015 marks several Albert Einstein anniversaries: 100 years since the publication of Einstein’s General Theory of Relativity, 110 years since the publication of the Special Theory of Relativity and 60 years since his passing.


What is so special about this year that deserves celebrations? My new book on Einstein: Einstein’s Pathway to the Special Theory of Relativity has just been returned from the printers and I expect Amazon to have copies very shortly.


The Publisher uploaded the contents and intro.


I hope you like my drawing on the cover:


Einstein, 1923: “Ohmmm, well… yes, I guess!”



The book is dedicated to the late Prof. Mara Beller, my PhD supervisor from the Hebrew University of Jerusalem who passed away ten years ago and wrote the book: Quantum Dialogue (Chicago University Press, 1999):


Have a very happy Einstein year!

Review: The Cambridge Companion to Einstein

I recommend this recent publication, The Cambridge Companion to Einstein, edited by Michel Janssen and Christoph Lehner.

It is a real good book: The scholarly and academic papers contained in this volume are authored by eminent scholars within the field of Einstein studies.

The first paper introduces the term “Copernican process”, a term invented by scholars to study scientists’ and Einstein’s achievements. The Copernican process describes a complex revolutionary narrative and the book’s side of the divide.

First, Einstein did not consider the relativity paper a revolutionary paper, but rather a natural development of classical electrodynamics and optics; he did regard the light quantum paper a revolutionary paper.

Carl Seelig wrote, “As opposed to several interpreters, Einstein would not agree that the relativity theory was a revolutionary event. He used to say: ‘In the [special] relativity theory it is no question of a revolutionary act but of a natural development of lines which have been followed for centuries'”.

Why did Einstein not consider special relativity a revolutionary event? The answer was related to Euclidean geometry and to measuring rods and clocks. In his special theory of relativity Einstein gave a definition of a physical frame of reference. He defined it in terms of a network of measuring rods and a set of suitable-synchronized clocks, all at rest in an inertial system.

The light quantum paper was the only one of his 1905 papers Einstein considered truly revolutionary. Indeed Einstein wrote Conrad Habicht in May 1905 about this paper, “It deals with the radiation and energy characteristics of light and is very revolutionary”.

A few years ago Jürgen Renn introduced a new term “Copernicus process”: […] “reorganization of a system of knowledge in which previously marginal elements take on a key role and serve as a starting point for a reinterpretation of the body of knowledge; typically much of the technical apparatus is kept, inference structures are reversed, and the previous conceptual foundation is discarded. Einstein’s achievements during his miracle year of 1905 can be described in terms of such Copernican process” (p. 38).

For instance, the transformation of the preclassical mechanics of Galileo and contemporaries (still based on Aristotelian foundations) to the classical mechanics of the Newtonian era can be understood in terms of a Copernican process. Like Moses, Galileo did not reach the promised land, or better perhaps, like Columbus, did not recognize it as such. Galileo arrived at the derivation of results such as the law of free fall and projectile motion by exploring the limits of the systems of knowledge of preclassical mechanics (p. 41).

Einstein preserved the technical framework of the results in the works of Lorentz and Planck, but profoundly changed their conceptual meaning, thus creating the new kinematics of the theory of special relativity and introducing the revolutionary idea of light quanta. Copernicus as well had largely kept the Ptolemaic machinery of traditional astronomy when changing its basic conceptual structure.

Although Einstein did not consider his relativity paper a revolutionary paper, he explained the new feature of his theory just before his death: “the realization of the fact that the bearing of the Lorentz transformation transcended its connection with Maxwell‘s equations and was concerned with the nature of space and time in general. A further new result was that the ‘Lorentz invariance’ is a general condition for any theory. This was for me of particular importance because I had already previously recognized that Maxwell‘s theory did not represent the microstructure of radiation and could therefore have no general validity”.

Planck assumed that oscillators interacting with the electromagnetic field could only emit and/or absorb energy in discrete units, which he called quanta of energy. The energy of these quanta was proportional to the frequency of the oscillator.

Planck believed, in accord with Maxwell’s theory that, the energy of the electromagnetic field itself could change continuously. Einstein first recognized that Maxwell’s theory did not represent the microstructure of radiation and could have no general validity. He realized that a number of phenomena involving interactions between matter and radiation could be simply explained with the help of light quanta.

Using Renn and Rynasiewicz phraseology, Planck “did not reach the promised land”, the light quanta. Moreover, he even disliked this idea. Einstein later wrote about Planck, “He has, however, one fault: that he is clumsy in finding his way about in foreign trains of thought. It is therefore understandable when he makes quite faulty objections to my latest work on radiation”.

In an essay on Johannes Kepler Einstein explained Copernicus’ discovery (revolutionary process): Copernicus understood that if the planets moved uniformly in a circle round the stationary sun (one frame of reference), then the planets would also move round all other frames of reference (the earth and all other planets): “Copernicus had opened the eyes of the most intelligent to the fact that the best way to get a clear group of the apparent movements of the planets in the heavens was to regard them as movements round the sun conceived as stationary. If the planets moved uniformly in a circle round the sun, it would have been comparatively easy to discover how these movements must look from the earth”.

Therefore Einstein’s revolutionary process was the following: Einstein was at work on his light quanta paper, but he was busily working on the electrodynamics of moving bodies too. Einstein understood that if the equation E = hf holds in one inertial frame of reference, it would hold in all others. Einstein realized that the ‘Lorentz invariance’ is a general condition for any theory, and then he understood that the Lorentz transformation transcended its connection with Maxwell’s equations and was concerned with the nature of space and time in general.