The Formative Years of Relativity. Gravitational waves go in one ear and out the other

The purpose of this piece is to review Hanoch Gutfreund’s and Jürgen Renn’s new book The Formative Years of Relativity: The History and Meaning of Einstein’s Princeton Lectures, Princeton University Press and Oxford University Press. I have found two problems in the book the first of which is Poincaré’s influence on Einstein and the second problem is related to gravitational waves. The first part of the review deals with Poincaré’s influence on Einstein. In this part I discuss the problem related to gravitational waves.

Gravitational waves have won the 2017 Nobel Prize in Physics. The prize is awarded to Kip Thorne, Rainer Weiss, Barry Barish for their work on Ligo experiment. Actually, Kip Thorne’s interesting work is on wormholes: the Einstein-Rosen bridges, the Schwarzschild (non-traversable) wormholes and traversable wormeholes converted into time machines. Wormholes spark our imagination because of the possibility of travelling backwards in time and sending signals through the throat in space-time with causality violation.

However, let us concentrate on gravitational waves.

I have ordered the book from Amazon together with The Asshole Survival Guide: How to Deal with People who Treat you Like Dirt written by Robert Sutton, a Stanford University professor:

formative1

It seems that the book, The Formative Years of Relativity has mistakes and also errors in English (the book needs proofreading). I therefore ask the second writer: Are you living in a fool’s paradise?

Right at the beginning Gutfreund argues that gravitational waves is the only major topic debated during the formative years that has no trace in Einstein’s book The Meaning of Relativity. He writes: “Had we restricted our commentaries to the contents of Einstein’s book, there would be no reason to mention gravitational waves; however, it would be inconceivable to talk about the formative years without thoroughly discussing them. What is worth emphasizing in this context is how Einstein’s predominant interest in this phenomenon which developed immediately after the completion of his general theory, had faded away completely by the time he delivered the Princeton lectures” (Gutfreund’s book, page 8):

Picture0

And the above conclusion is mentioned in the New York Times book review section:

Picture00

Gutfreund and Renn “note, however, a conspicuous absence. There is ‘no trace’ in Einstein’s lectures of what is today considered a key topic in relativity: gravitational waves”.

In fact quite the opposite is true. Einstein’s mathematical derivations in his 1916 and 1918 two gravitational waves papers play a central role in The Meaning of Relativity of 1922. It therefore appears that Einstein’s interest in this topic had not faded away by the time he delivered the Princeton lectures.

Consider Einstein’s gravitational waves paper of 1916:

Picture2

And here is the same equation in his 1921 book, The Meaning of Relativity (Gutfreund’s book, page 240):

Picture1

Equation (92) represents the metric of general relativity Picture1 - Copy, which is the sum of the Minkowski flat metric Picture1 - Copy - Copy of special relativity and Picture1 - Copy (2) a very small disturbance.

And again, Einstein’s gravitational waves paper of 1916:

Picture4

And his book, The Meaning of Relativity (Gutfreund’s book, page 246):

Picture3 - Copy

We write the field equations in terms of Picture1 - Copy (2). Equation (96b) below is the linearized approximation of Einstein’s field equations. Then we can solve the field equations in the same way that we solve Maxwell’s electromagnetic field equations (Gutfreund’s book, page 247):

Picture3

Equations (101) above from the book The Meaning of Relativity, which are exactly like equations (9) from the gravitational waves paper of 1916, are the method of retarded potentials.

In his review paper of 1916, The Foundation of the General Theory of Relativity, Einstein’s field equations were valid for systems in unimodular coordinates, i.e. he chose the coordinates so that Picture1111.

However, in his gravitational waves paper of 1916, Einstein thanked de Sitter for sending him the following metric, the one below: “Herr [Willem] de Sitter sent me these values by letter”:

Picture6

And in the book, The Meaning of Relativity he writes the the same metric (Gutfreund’s book, page 249):

Picture5

Indeed, in the book, The Formative Years of Relativity, Gutfreund writes: “On 22 June 1916, Einstein wrote to Willem de Sitter […] ‘For I found that the gravitation equations in first-order approximation [i.e. equations (96b) the linearized approximation of Einstein’s field equations] can be solved exactly by means of retarded potentials, if the condition of Picture1111is abandoned. Your solution for the mass point is then the result upon specialization to this case'” (Gutfreund’s book, page 97):

Picture7

Daniel Kennefick explains Einstein’s letter to de Sitter in his book, Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves (page 51):

Picture8

By the way I highly recommend Kennefick’s book.

That being said, Gutfreund begins the chapter on gravitational waves with Max Born. Born asked Einstein how fast does the effect of gravitation propagates according to his theory? Einstein replied to him that it is simple to write down the equation for the case where the disturbances one places into the field are infinitesimal. In that case the metric Picture1 - Copy differs only infinitesimally (Picture1 - Copy (2)) from the values (Picture1 - Copy - Copy) that would be present without that disturbance; and the disturbance propagates with the velocity of light (Gutfreund’s book, page 94):

Picture9a

I wrote in my 2015 book General Relativity Conflict and Rivalries and in other places as well that the first time Einstein mentioned gravitational waves was in the discussion after the Vienna lecture in 1913:

Picture12

However, Gutfreund does not cite my 2015 book.

In 2016 Gutfreund wrote a blog post and added Jürgen Renn and Diana Buchwald as co-authors:

Picture10

They told the story of the origin of gravitational waves:

Picture11

They briefly summarize the history of gravitational waves: “The first debates about the existence of gravitational waves even preceded the completion of general relativity by Einstein in November, 1915”. They only mention Max Abraham but don’t write that the first time that Einstein had mentioned gravitational waves was after the Vienna lecture in 1913, in the discussion, Max Born asked Einstein how fast does the effect of gravitation propagates according to his Entwurf theory.

Finally, in the same book, General Relativity Conflict and Rivalries, of 2015 I wrote:

Picture14

And I read in Gutfreund’s book of 2017 and discover that he writes exactly the same thing but does not cite my book (Gutfreund’s book, page 35):

Picture13

 

Advertisements

The Formative Years of Relativity and a Prejudice on Poincaré’s Conventionalism

The purpose of this piece is to review Hanoch Gutfreund’s and Jürgen Renn’s new book The Formative Years of Relativity: The History and Meaning of Einstein’s Princeton Lectures, Princeton University Press and Oxford University Press. I find two problems in the book the first of which is Poincaré’s influence on Einstein. This is the first part of the review which deals with Poincaré’s influence on Einstein. Since the book has mistakes and also errors in English and Jürgen Renn is considered a notable scholar, I assume that Gutfreund is probably responsible for the mistakes and for the errors in English.

Let us begin with page 26 of the book The Formative Years of Relativity. Gutfreund is apparently much attracted by “the painstaking analysis by the philosopher of science Yemima Ben-Menachem” in her book Conventionalism: From Poincaré to Quine. Cambridge University Press, Cambridge (2006):

Yemima 1921

Gutfreund writes that “Until 1921, Einstein did not mention Poincaré explicitly”.

Einstein obviously mentioned Poincaré before 1921. For instance, after the first Solvay congress in 1911, Einstein wrote to Heinrich Zangger (see the Collected Papers of Albert Einstein, CPAE):

Zangger1

……

Zangger2

Einstein says that Poincaré was in general simply antagonistic and for all his acuity showed little understanding of the situation.

There was then great excitement among philosophers and historians of science when they discovered, as Gutfreund writes on page 26 above that “We know that he [Einstein] read Science and Hypothesis with his friends in the Akademie Olympia in 1902″.

Poincaré’s publisher Flammarion published La science et l’hypothèse (Science and Hypothesis) in Paris in 1902. How do we know that Einstein read this book in 1902 and not in 1903 or 1904? Take a look at Gutfreund’s words: “We know that he [Einstein] read Science and Hypothesis with his friends in the Akademie Olympia in 1902″. It means that Einstein rushed to the local bookstore in Bern the day the book was out, dodged people in the crowd waiting outside the bookstore and found the first French edition of Poincaré’s book. But maybe Einstein read the 1904 German translation of Poincaré’s 1902 book? This could be quite different from the original 1902 French edition.

Subsequently,  on page 26 Gutfreund writes: “Einstein’s biographer Abraham Pais quotes one of the members, Maurice Solovine, as saying: ‘This book profoundly impressed us and kept us breathless for weeks on end'”:

Pais

Gutfreund simply takes the Pais paragraph from Yemima Ben-Menahem’s book, Conventionalism, see footnote 80 below (page 134):

134

This is a mistake: We cannot cite Einstein’s biographer Abraham Pais quoting one of the members of the Akademie Olympia (Olympia Academy). The biography of Pais is not a primary source. We have to check a primary source and see whether Maurice Solovine himself said: “This book profoundly impressed us and kept us breathless for weeks on end”.

Here is the original primary source:

soloving

Lettres à Maurice Solovine. Paris: Gauthier-Villars, 1956.

Here luck plays an important role because in the above book Solovine writes in French that Poincaré’s book “profoundly impressed us and kept us breathless for many weeks”. One should, however, check the original quote in French.

On page 30 Gutfreund tells the story of Einstein who explored “a famous example that goes back Poincaré”. There are several typos in the book.

Poincare typo

It is interesting, however, to look at the following sentence, several sentences below the above one on page 30:

He typo

“Without the distinction between axiomatic Euclidean geometry and practical rigid-body geometry, we arrive at the view advanced by Poincaré”. And then Gutfreund adds an end-note 15: “For an extensive analysis of Poincaré’s conventionalism, see Yemima Ben-Menachem, […]” Her book Conventionalism.

Yemima 1921-2

You might, of course, be tempted to suppose that Ben-Menahem has said the above words in her book. But this is by no means the case. Einstein says this in his 1921 talk, “Geometry and Experience” (see CPAE):

geometry and experience

After the words: “Without the distinction between axiomatic […]” Gutfreund writes: “He suggested that […]”

He typo

Who is “He”? Einstein or Poincaré?

Let us then examine Yemima Ben-Menahem’s book, Conventionalism.

I am quoting from Yemima Ben-Menahem’s book Conventionalism, page 84:

“… as both GR [general relativity] and the special theory of relativity originated in insights about equivalence, an element of conventionality might seem to be built right into the theory.  It is important to recognize, however, that Einstein’s use of equivalence arguments differs fundamentally from that of the conventionalist”.

And on page 134 Ben-Menahem writes: “The preceding discussion should alert us to the traces of Poincaré’s equivalence argument in Einstein’s work on GR as well. […] The centrality of equivalence arguments and their geometric implications is too obvious in Science and Hypothesis to be missed by a reader such as Einstein, who, we know, was familiar with the book. Beginning with the hypothesis of equivalence in 1907, Einstein makes use not only of the general idea of equivalent descriptions, but also of the types of examples Poincaré used”.

page_134

and on page 135, Yemima Ben Menahem argues that “Einstein was deeply influenced by the idea of equivalence, and to that extent could concede that Poincaré was right”:

page 135

I have found no historical evidence (primary documents, i.e. correspondence of Einstein with others, manuscripts, and also interviews with Einstein) supporting the claim that Einstein makes use of Poincaré’s equivalent descriptions.

In the 1920 unpublished draft of a paper for Nature magazine, “Fundamental Ideas and Methods of the Theory of Relativity, Presented in Their Development”, Einstein explained how he arrived at the principle of equivalence (see CPAE):

happiest happiest2

(Original in German). “When I (in Y. 1907) [in Bern] was busy with a comprehensive summary of my work on the special theory relativity for the ‘Jahrbuch für Radioaktivität und Elektronik’, I also had to try to modify Newton’s theory of gravitation in such a way that its laws fitted into the theory. Attempts in this direction showed the feasibility of this enterprise, but did not satisfy me, because they had to be based upon unfounded physical hypotheses. Then there came to me the happiest thought of my life in the following form:

The gravitational field is considered in the same way and has only a relative existence like the electric field generated by magneto-electric induction. Because for an observer freely falling from the roof of a house there is during the fall – at least in his immediate vicinity – no gravitational field. Namely, if the observer lets go of any bodies, they remain relative to him, in a state of rest or uniform motion, regardless of their particular chemical and physical nature. The observer is therefore justified in interpreting his state as being ‘at rest’.

The extremely strange experimental law that all bodies fall in the same gravitational field with the same acceleration, immediately receives through this idea a deep physical meaning. If there were just one single thing that fell differently in a gravitational field from the others, the observer could recognize with its help that he was in a gravitational field and that he was falling in the latter. But if such a thing does not exist – as experience has shown with great precision – then there is no objective reason for the observer to regard himself as falling in a gravitational field. Rather, he has the right to consider his state at rest with respect to gravitation, and his environment as field-free.

The experimental fact of independence of the material of acceleration, therefore, is a powerful argument for the extension of the relativity postulate to coordinate systems moving nonuniformly relative to each other”.

Isaac Newton had already recognized that Galileo’s law of free fall was connected with the equality of the inertial and gravitational mass. In approximately 1685, Newton realized that there was an (empirical) equality between inertial and gravitational mass (Newton 1726, Book I, 9). For Newton, however, this connection was accidental. Einstein, on the other hand, said that Galileo’s law of free fall could be viewed as Newton’s equality between inertial and gravitational mass, but for him the connection was not accidental.

Hence, Einstein made use of Newton’s equality (accidental equivalence) between inertial and gravitational mass and Galileo’s law of free fall and in his 1907 paper, “On the Relativity Principle and the Conclusions Drawn from It”, he invoked a new principle, the equivalence principle or hypothesis. He assumed the complete physical equivalence of a homogeneous gravitational field and a corresponding (uniform) acceleration of the reference system. Acceleration in a space free of homogeneous gravitational fields is equivalent to being at rest in a homogeneous gravitational field.

Ernst Mach criticized Newton’s bucket experiment. He said that we cannot know which of the two, the water or the sky, are rotating; both cases produce the same centrifugal force. Mach thus expressed a kind of equivalence principle: Both explanations lead to the same observable effect. Einstein could have been influenced by Mach’s idea that we cannot know which of the two, the water or the sky, are rotating. Indeed Charles Nordmann interviewed Einstein and wrote: “Perhaps even more than Poincaré, Einstein admits to have been influenced by the famous Viennese physicist Mach”.

On page 31, Gutfreund writes in his book:

disk

“Had he [Einstein] instead accepted the conventionalist position […]” and then Gutfreund writes: “This in fact is exactly the situation in which Einstein introduced the mental model of a rotating disk, which he used as early as 1912 to show that the new theory of ravitation requires a new framework for space and time”.

Another typo: it should be the new theory of gravitation.

The rotating disk story starts with a problem in special relativity, with Max Born’s notion of rigidity and not with Poincaré! Einstein never mentioned any influence Poincaré had had on him when inventing the disk thought experiment.

At the annual eighty-first meeting of the German Society of Scientists and Physicians in Salzburg on 21-25 September 1909, Born first analyzed the rigid body problem and showed the existence of a class of rigid motions in special relativity.

John Stachel describes this state of affairs in his seminal paper of 1980: “The Rigidly Rotating Disk as a ‘Missing Link’ in the History of General Relativity”. It seems that Gutfreund is unacquainted with Stachel’s paper.

On September 29, 1909 the Physikalische Zeitschrift received a short note from Paul Ehrenfest. In his note Ehrenfest demonstrated that according to Born’s notion of rigidity, one cannot bring a rigid body from a state of rest into uniform rotation about a fixed axis. Ehrenfest had pointed out that a uniformly rotating rigid disk would be a paradoxical object in special relativity; since, on setting it into motion its circumference would undergo a contraction whereas its radius would remain uncontracted.

Born noted: “Mr. Ehrenfest shows that the rigid body at rest can never be brought into uniform rotation; I have discussed the same fact with Mr. Einstein in the meeting of natural scientists in Salzburg”. Born discussed the subject with Einstein and they were puzzled about how the rigid body at rest could never be brought into uniform motion. Born and Einstein discovered in that discussion that setting a rigid disk into rotation would give rise to a paradox: the rim becomes Lorenz-contracted, whereas the radius remains invariant. This problem was discussed almost simultaneously by Ehrenfest in the above short note.

Later in 1919, Einstein explained to Joseph Petzoldt why it was impossible for a rigid disk in a state of rest to gradually set into rotation around its axis:

PetoltzPetoltz2

On page 32 Gutfreund mentions the 10th German edition of Einstein’s popular book Relativity the Special and General Theory. He says that in a copy of this book there is a sheet of paper in the handwriting of Einstein’s stepdaughter containing a remark:

disk2

As you can see this remark is quite similar to Einstein’s letter to Petzoldt. Thus, it is preferable to quote Einstein’s own words, his letter to Petzhold. It seems that Gutfreund is unacquainted with the history of the rotating disk, because according to his book he is unaware of Stachel’s paper and the letter to Petzhold.

At the end of October 1909 Born submitted an extended version of his Salzburg talk to Physikalische Zeitschrift. In December 1909 Gustav Herglotz published a paper in which he noted that according to Born’s notion of rigidity, a “rigid” body with a fixed point can only rotate uniformly about an axis that goes through it, like an ordinary rigid body. Several months later, Einstein mentioned Born’s and Herglotz’s papers in a letter from March 1910 to Jakob Laub, in which he said that he was very much interested in their then recent investigations on the rigid body and the theory of relativity.  A month later, in conversations with Vladimir Varičak Einstein explained that the great difficulty lies in bringing the “rigid” body from a state of rest into rotation. In this case, each material element of the rotating body must Lorentz contract. See my new book Einstein’s Pathway to the Special Theory of Relativity 2Ed for full details.

In his paper from February 1912, Einstein considered a system K with coordinates x, y, z in a state of uniform rotation (disk) in the direction of its x-coordinate and referred to it from a non-accelerated system. Einstein wrote that K‘s uniform rotation is uniform “in Born’s sense”, namely, he considered a rotating disk already in a state of uniform rotation observed from an inertial system and reproduced his conversations with Varičak. Einstein then extended the 1907–1911 equivalence principle to uniformly rotating systems as promised in conversations with Sommerfeld in 1909.

All we know according to primary sources is that the origin of the rotating disk story is in a problem in special relativity, Max Born’s notion of rigidity and Ehrenfest’s paradox, which Einstein mentioned many times before 1912. Einstein never mentioned any influence Poincaré had had on him when inventing the disk thought experiment. Writing that Einstein was influenced by Poincaré’s conventionalism and equivalent arguments is speculating about the influence of the later on the former.

Gutfreund’s mistake about Poincaré’s influence on Einstein and Einstein’s so-called failure to acknowledge Poincaré’s work in connection with the equivalence principle and the rotating disk thought experiment in general relativity comes from Yemima Ben-Menahem’s book, Conventionalism. However, this misconception or prejudice on the part of Ben-Menahem comes from my PhD thesis which was submitted to the Hebrew University of Jerusalem back in 1998. I was a PhD student in the program for the history and philosophy of science and Yemima Ben-Menahem was a professor there. Here for example are several paragraphs from my PhD thesis:

thesis2

thesis

thesis3.jpg

And Poincaré’s disk thought experiment:

thesis4

…..

thesis5

……

thesis6

…..

thesis7

I have thus written in my thesis about Poincaré’s disk thought experiment and the equivalence of Euclidean and non-Euclidean geometries. I then mentioned Einstein’s rotating disk thought experiment and said that we eliminate absolute motion of the disk by assuming the equivalence of gravity and inertia. I then spoke about conventionalism and Einstein’s equivalence principle.

After the PhD I corrected and edited my PhD but then I was horrified to discover what looked like a magnification of the prejudice of Poincaré’s conventionalism and equivalence argument and his disk thought experiment influencing Einstein when creating general relativity: In 2006 Yemima Ben-Menahem said exactly the same thing in her book, Conventionalism. You might say that it is even a more unfortunate instance to write about Poincaré’s influence on Einstein in connection with the equivalence principle and the disk thought experiment in general relativity over and over again in a single book… (see now for instance her book, pages 64-65):

diskyemima

…….

diskyemima2

……

diskyemima3

Going on to Hanoch Gutfreund, in his new book of 2017, The Formative Years of Relativity, he has simply brought this incidence to the surface when he told the whole story of this prejudice all over again.

 

 

 

 

 

 

Total Eclipse of the Sun and Deflection of light Rays

According to Einstein’s prediction, that is to say the deflection (bending) of light rays in the gravitational field of the Sun: those stars closest to the limb of the Sun during the eclipse are found to be displaced slightly by amounts that are inversely proportional to the distance of the stellar image from the Sun. The light from a star close to the limb of the Sun is bent inward, toward the Sun, as it passes through the Sun’s gravitational field. The image of the star appears to observers on the Earth to be shifted outward and away from the Sun.

The Universe and Dr. Einstein by Barnett (with forward by Einstein)

Barnett-TheUniverseAndDrEinstein

In 1915 Einstein calculated the angle between the actual path of the starlight, the true position of the star, and the apparent path of the ray of light, the star seen during the eclipse. He obtained a result: 1.7” (seconds of arc).

However, in 1911 and 1913 he derived a different result, actually he had obtained half of this result: 0.84” (seconds of arc).

Einstein_letter-2

Einstein’s letter to George Ellery Hale which illustrates starlight being deflected by the gravity of the Sun. Oct. 14, 1913. The Huntington Library, Art Collections, and Botanical Gardens. Here

During a total eclipse of the Sun, it is possible to take pictures of the field of stars surrounding the darkened location of the Sun, because during its occultation, the light emanating from the Sun does not interfere with visibility of fainter objects.

In the eclipse expedition of 1919 Sir Arthur Stanley Eddington and Charles Rundle Davidson went to find whether they could verify Einstein’s prediction of the deflection of starlight in the gravitational field of the Sun. Eddington and his assistant went to the island of Principe off the coast of Africa while Davidson and his assistant went to Sobral in North Brazil. In presenting their observations to the Royal Society of London in November 1919, the conclusion was that they verified Einstein’s prediction of deflection at the Sun’s limb to very good accuracy.

Eddington

Sir Arthur Stanley Eddington. Source (internet, unknown). If anyone knows the source please leave a comment.

The pictures taken during the solar eclipse are compared with pictures of the same region of the heavens taken at night. An astronomer compares his photographs taken during a total eclipse of the Sun with check plates, that is to say with comparison plates of the same stars (the eclipse field) when the Sun has moved away.

In 1919 Eddington examined the check field of stars that was photographed at Oxford Observatory. It was nearly the same as that of the total eclipse field of stars, which was photographed at the small island belonging to Portugal, Principe, at the same altitude as in Oxford in order to ensure that any systematic error, due to imperfections of the telescopes or other causes, might affect both sets of plates equally. There were differences in scale though between the compared photographs. Eddington determined these differences of scale between Oxford and Principe. The primary purpose of the comparison was to check the possibility of systematic errors arising from the different conditions of observation at Oxford and Principe.

After comparing the Oxford and Principe check plates, Eddington concluded that the Oxford photographs show none of the displacements which are exhibited by the photographs of the eclipse field taken under precisely similar instrument conditions. Eddington inferred that the displacements in the latter case could only be attributed to presence of the eclipsed Sun in the field and not to systematic errors.

Eddington’s four values of deflection in Principe were: 1.94, 1.44, 1.55 and 1.67 seconds of arc. He calculated the mean of these to be: 1.65” (seconds of arc). He added corrections due to experimental errors and due to the fact that the four determinations involved only two eclipse plates. The final Principe result was: 1.61±0.30 seconds of arc. Eddington calculated the final Sobral result: 1.98±0.12 seconds of arc and concluded: “They evidently agree with Einstein’s predicted value 1.75 seconds of arc.

IMG_2686

photo

Photos taken at the Science Museum, London. Eddington’s original negative photo.

Final confirmation of Einstein’s prediction of the deflection of light near the Sun came from William Wallace Campbell and his assistant Robert J. Trumpler at the eclipse of September 22, 1922 in Australia. Campbell and Trumpler also compared the eclipsed plates with the photographs of the same stars taken at Tahiti four months before the eclipse. The observations with the first camera led to a stellar deflection of 1.82±0.15 seconds of arc for the light deflection at the Sun’s limb. The combined observations from the two instruments used by Campbell and Trumpler gave the value of 1.75±0.9 seconds of arc for the deflection at the Sun’s limb, which is in excellent agreement with the value predicted by Einstein’s theory.

Lick

For more photos see here.

For more information on the history of eclipse expeditions and Einstein’s general theory of relativity see my books:

General Relativity Conflict and Rivalries: Einstein’s Polemics with Physicists

Ein

Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)

cover

 

 

 

 

My new book: Einstein’s Pathway to the Special Theory of Relativity (2nd Edition)

cover

My new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) is coming out in August 2017.

My new book is a comprehensive monograph on Albert Einstein’s Odyssey to Special and General Relativity.

It is the second edition of my first book, Einstein’s Pathway to the Special Theory of Relativity:

Picture1

The book brings together the most recent studies regarding the discovery of Special Relativity between 1895 and 1905 and pertaining to the genesis of General Relativity between 1905 and 1918.

The book encompasses an in-depth historiographical analysis of Einstein’s theory of relativity and Einstein’s own derivations and philosophical perspectives of Einstein’s work.

The first chapter provides a narrative of Einstein’s early life until 1914 without resorting to hagiography.

The second chapter discusses Fin de siècle physics.

The third chapter deals with Einstein’s path to the Special Theory of Relativity and Henri Poincaré’s Dynamics of the Electron.

The fourth chapter focuses on the genesis of the General Theory of Relativity from 1905 until approximately 1922.

The fifth chapter centralizes on Einstein’s methodology and creativity, and on Poincaré’s philosophy.

The final chapter analyzes the sources.

The book is 660 pages long, a comprehensive study of Einstein’s discovery of special and general relativity and of Einstein’s cosmology.

I drew the cover of the book.

Einstein loved sailing and he owned a sailboat, which he called Tümmler (porpoise).

AE-Tuemmler1

The cover of my new book Einstein’s Pathway to the Special Theory of Relativity (2nd Edition) shows Einstein, the young patent clerk wearing the patent office suit, the young man and the sea.

book3-1

 

 

The Einstein Legacy Project

Happy Birthday Albert Einstein!

Einstein once wrote to his close friend: “With fame I became more and more stupid, which of course, is a very common phenomenon”.

Bingo. This exactly describes the spirit of a new project called, “The Einstein Legacy Project”.

Here is “the official Einstein Legacy Project video. It tells the story of how and WHY this project was born”.

However, the people in the official Einstein Legacy Project video use Einstein’s name in order to throw lavish parties. Entire fortunes are spent for celebrations and demonstrations of pomp and power. Einstein was not a Sun king, Louis le Grand.

The Einstein Legacy Project consists of two lavish projects and two (I hope so) less lavish projects (I will present 3 of them):

1) Dinner of the Century: (here)

“To celebrate the centennial of Einstein’s Relativity theory and to launch the publication of Genius: 100 Visions of the Future, the Einstein Legacy Project will be holding the ‘Dinner of the Century’; a star studded event that will bring together our Genius contributors, along with young Einsteins and dignitaries from around the world”.

While we celebrate and launch the grandiose 3D book, in the presence of Hollywood actors and other dignitaries from around the world, and mid all the pomp and ceremony, we receive Einstein’s response to the “Dinner of the Century” as told to his biographer Carl Seelig (see full story in my book Einstein’s Pathway to the Special theory of Relativity, 2015):

“The celebration ended with the most opulent banquet that I have ever attended in my life. So I said to a Genevan patrician who sat next to me, ‘Do you know what Calvin would have done if he were still here?’ When he said no and asked what I thought, I said: ‘He would have erected a large pyre and had us all burned because of sinful gluttony’. The man uttered not another word, and with this ends my recollection of that memorable celebration”.

In September 2017 the Einstein Legacy Project will throw an opulent banquet, a parodic dinner, a celebration of sinful gluttony.

2) 3D printed book: Genius: 100 Visions of the Future: (here)

“To celebrate the 100th anniversary of the publication of Einstein’s General Theory of Relativity, the Einstein Legacy Project is embarking on a publishing milestone: collecting the visions of the 100 greatest innovators, artists, scientists and visionaries of our time in the world’s first 3D-printed book – Genius: 100 Visions of the Future. It’s the creation of world renowned designer Ron Arad, formed in the likeness of Einstein himself in a 3D limited edition book for the ages”.

Here is Einstein’s response to the 3D book formed in the likeness of his head:

“Generally I find it tasteless… I have also prohibited …[this] book from appearing in the German language, but allowed the book to appear in foreign languages, I also hold the latter [author] to be quite tasteless. … [He] need[s] to earn money, which serves as an excuse for and for that […he] cannot wait until I’m dead. Is the mention of such a basic fact an accusation?”

I agree with you Einstein, I also find it tasteless.

Who are contributing to this book? For instance, Barbra Streisand, Deepak Chopra and others.

I would like to ask the contributors a question: A uniformly moving train could as well be seen at rest and the tracks, including the landscape, as uniformly moving. Will the common sense of the locomotive engineer allow this? He will object that he does not go on to heat and grease the landscape but rather the locomotive, and that consequently it must be the latter whose motion shows the effect of his labor. Why? Can you explain why? After all you are “genius contributors”…. If you can explain this, then I can pose questions about general relativity.

3) Einstein’s Archives and Visitor Center: (here)

“The first and only institution to celebrate the life, history and vision of Einstein. Built around the unique collection of The Hebrew University of Jerusalem, where Einstein bequeathed his entire personal archive, the Einstein Archive and Visitor Center will be a global attraction dedicated to science and humanitarian ideals”.

This is the only project that Einstein probably would have approved. However, in light of the above two projects (pomp “Dinner of the Century” and 3D book), I am very doubtful that the people who are organizing the Einstein’s Legacy Project really care about Einstein, his legacy and his writings.

Stay tuned. More to come…. … ….

אודיסאת איינשטיין ליחסות הכללית Einstein’s Odyssey to General Relativity

מאמר שלי על דרכו של איינשטיין לתורת היחסות הכללית: אודיסאת איינשטיין ליחסות הכללית

סיינטיפיק אמריקן ישראל

“Einstein’s Odyssey to General Relativity”, Scientific American Israel

את המונח “אודיסאה” ליחסות הכללית טבע פרופ’ ג’ון סטצ’ל מאוניברסיטת בוסטון והוא מייצג את המסע המפרך של איינשטיין בדרכו ליחסות הכללית. ראו המאמר של סטצ’ל למטה

Odyssey to general relativity is John Stachel’s memorable phraseology. See:

Stachel, John (1979). “Einstein’s Odyssey: His Journey from Special to General Relativity”. In Einstein from B to Z, 2002.

I am sorry but this piece is in Hebrew. You can read my book General Relativity Conflict and Rivalries, my papers on Einstein and general relativity and a short summary below.

Picture1

מפייסבוק: מארחים את ד”ר גלי וינשטיין לדבר על איינשטיין

SF1

My drawing of Einstein:      האיור שלי של איינשטיין

איינשטיין צעיר

And the original (I tried as hard as I could to draw a young Einstein…):       המקור

תמונה1

The article discusses the following topics:

1907. The Happiest thought of my life.

3

1907-1911. The equivalence principle and elevator experiments.

4

1911. Deflection of light and explaining deflection of light using an elevator thought experiment.

5

1911-1912 (1916). The disk thought experiment, gravitational time dilation and gravitational redshift.

6

1912. The disk thought experiment and non-Euclidean geometry.

7

1912. Einstein to Marcel Grossmann: “Grossmann, you must help me or else I’ll go crazy!”. Grossmann searched the literature, and brought the works of Bernhard Riemann, Gregorio Curbastro-Ricci, Tullio Levi-Civita and Elwin Bruno Christoffel to Einstein’s attention. With Grossmann’s help Einstein searched for gravitational field equations for the metric tensor in the Zurich Notebook.

8

1913-1914. The Entwurf theory. In 1913, Einstein and Michele Besso both tried to solve the new Entwurf field equations to find the perihelion advance of Mercury.

2October 1915. Einstein realizes there are problems with his 1914 Entwurf theory. November 1915. Einstein’s competition with David Hilbert.

1

November 1915. Four ground-breaking papers: Einstein presents the field equations of general relativity, finds the advance of the perihelion of Mercury and predicts that a ray of light passing near the Sun would undergo a deflection of amount 1.7 arc seconds.

General Relativity without the Equivalence principle?

I have skimmed through this book Handbook of Spacetime:

Picture1

Picture2

The following represents my impressions formulated after reading the sections about the equivalence principle.

I read this paper:

Picture3

Picture4

Picture5a

However, Einstein did not write this wonderful passage in the letter to Robert Lawson. Here is the letter to Lawson (Einstein to Lawson, 22 January 1920):

Picture7

Einstein writes to Lawson in the above letter: “The article for Nature is almost finished, but it has unfortunately become so long that I very much doubt whether it could appear in Nature“. Indeed, in a 1920 unpublished draft of a paper for Nature, “Fundamental Ideas and Methods of the Theory of Relativity, Presented in Their Development”, Einstein wrote the above long paragraph describing him in 1907 sitting in the Patent Office. He was brooding on special relativity, and suddenly there came to him the happiest thought of his life:

Picture8

Picture9

Picture10

Let us analyze this passage. The man in free fall (elevator experiments): Special relativity is incorporated into general relativity as a model of space-time experienced by an observer in free fall, over short times and distances (locally):

Between 1905 and 1907, Einstein tried to extend the special theory of relativity so that it would explain gravitational phenomena. He reasoned that the most natural and simplest path to be taken was to correct the Newtonian gravitational field equation. Einstein also tried to adapt the Newtonian law of motion of the mass point in a gravitational field to the special theory of relativity. However, he found a contradiction with Galileo’s law of free fall, which states that all bodies are accelerated in the gravitational field in the same way (as long as air resistance is neglected). Einstein was sitting on a chair in my patent office in Bern and then suddenly a thought struck him: If a man falls freely, he would not feel his weight. This was the happiest thought of his life. He imagined an observer freely falling from the roof of a house; for the observer there is during the fall – at least in his immediate vicinity – no gravitational field. If the observer lets go of any bodies, they remain relative to him, in a state of rest or uniform motion, regardless of their particular chemical and physical nature. The observer is therefore justified in interpreting his state as being (locally) at rest. Einstein’s 1907 breakthrough was to consider Galileo’s law of free fall as a powerful argument in favor of expanding the special principle of relativity to systems moving non-uniformly relative to each other. Einstein realized that he might be able to generalize and extend special relativity when guided by Galileo’s law of free fall. The Galilean law of free fall (or inertial mass is equal to gravitational mass) became known as the weak principle of equivalence.

Lewis Ryder explains: “Some writers distinguish two versions of the equivalence principle: the weak equivalence principle, which refers only to free fall in a gravitational field and is stated… as The worldline of a freely falling test body is independent of its composition or structure; and the strong equivalence principle, according to which no experiment in any area of physics should be able, locally, to distinguish a gravitational field from an accelerating frame”.

There are several formulations of the weak and the strong principles of equivalence in the literature. By far the most frequently used formulation of the strong principle of equivalence is Einstein’s 1912 local principle of equivalence: In a local free falling system special relativity is valid. (See my book General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists, 2015, for further details).

Nick Woodhouse explains:

Picture32

in the chapter:

Picture31

Hence Joshi says:

Picture34

in the chapter:

Picture33

Lewis Ryder

Picture23

writes in the above paper:

Picture35

(i.e. Einstein 1911 paper: “On the Influence of Gravitation on the Propagation of Light”). He formulates the equivalence principle in the following way: “In a freely falling (non-rotating) laboratory occupying a small region of spacetime, the local reference frames are inertial and the laws of physics are consistent with special relativity”. He then writes:

Picture11

The equivalence principle enables us to find just one component g00 – of the metric tensor gmn. All components can be found (at least in principle) from the Einstein field equations. Ryder thus concludes that the equivalence principle is dispensable. I don’t quite agree with Ryder.

In my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012 and also in my 2014 paper,  “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv: 1411.7370v [physics.hist-ph], 26 Nov, 2014, I demonstrate the following:  On November 18, 1915, Einstein found approximate solutions to his November 11, 1915 field equations and explained the motion of the perihelion of Mercury. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. Indeed, the first to offer an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 11, 1915 paper. Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. In January, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article, “The Foundation of the General Theory of Relativity”, on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Even so, Einstein preferred not to base himself on Schwarzschild’s exact solution, and he returned to his first order approximate solution from November 18, 1915. In the final part of the 1916 review paper Einstein demonstrated that a gravitational field changes spatial dimensions and the clock period:

Picture25

This equation is further explained in my 2012 paper (page. 56):

Picture24

Neither did Einstein use the Schwarzschild solution nor was he guided by the  equivalence principle. He was rather using an approximate solution and the metric, the line element to arrive at the same factor he had obtained by assuming the heuristic equivalence principle. He thus demonstrated that the equivalence principle was a fundamental principle of his theory, because in 1912 he formulated an equivalence principle valid only locally  (see my book: General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists, 2015, p. 184). I further explain it below.

Ryder then explains: The equivalence principle is local (a complete cancelation of a gravitational field by an accelerating frame holds locally). However, over longer distances two objects in free fall at different places in a realistic gravitational field move toward each other and this does not happen in an accelerating elevator. The cancelation of the gravitational field by an accelerating field is thus not complete. According to general relativity this effect (tidal effect) is a consequence of the curvature of space-time:

Picture36

Although the equivalence principle might have been a heuristic guide to Einstein in his route to the fully developed theory of general relativity, Ryder holds that it is now irrelevant.

I don’t agree with Ryder’s conclusion which resembles that of John Lighton Synge (and Hermann Bondi). Indeed the equivalence principle is not valid globally (i.e. for tidal effects). Although the strong equivalence principle can at best be valid locally, it is still crucial for the general theory of relativity:

  1. Einstein formulated an equivalence principle which is valid only locally. Special relativity is valid locally and space-time is locally the Minkowski space-time.
  2. The principle of equivalence is fundamental for a metric theory and for our understanding of curved space-time: Freely falling test bodies move along geodesic lines under the influence of gravity alone, they are subject to an inertio-gravitational field . The metric determines the single inertio-gravitational field (affine connection), and there is breakup into inertia and gravitation relative to the acceleration. According to the equivalence principle, the components of the affine connection vanish in local frames. John Stachel quotes a passage from Einstein’s letter to Max von Laue:

Picture45

Stachel, John, “How Einstein Discovered General Relativity: A Historical Tale with Some Contemporary Morals”, Einstein B to Z, 2002.

Indeed Ryder quotes J. L. Synge :

Picture42

Einstein’s equivalence principle was criticized by Synge:

Picture48

Synge, J. L. (1960). Relativity: The General Theory (Amsterdam, The Netherlands: North Holland Publishing Co).

And Hermann Bondi reacted to Einstein’s principle of equivalence:

Picture28

Bondi also said (‘NO SUCCESS LIKE FAILURE …’: EINSTEIN’S QUEST FOR GENERAL RELATIVITY, 1907–1920, Michel Janssen):

Picture29

Picture30

Other authors contributing to the Handbook of Spacetime write the following:

Graham S. Hall in his paper:

Picture13

writes the following:

Picture14

“The choice of a geodesic path (Einstein’s principle of equivalence) reflects the results of the experiments of Eötvös and others, which suggest that the path of a particle in a pure gravitational field is determined by its initial position and initial velocity”. This is not Einstein’s equivalence principle. This is the Galilean principle of equivalence or the weak equivalence principle.

And according to Vesselin Petkov:

Picture15

the geodesic line is indeed a manifestation of Galileo’s free fall law:

Picture16

Ryder presents tests for the equivalence principle. The operation of the global positioning system, the GPS, is a remarkable verification of the time dilation. The GPS system consists of an array of 24 satellites, which describe an orbit round the earth of radius 27,ooo km, and are 7000 km apart, and every 12 hours travel at about 4km/s.  Each satellite carries an atomic clock, and the purpose is to locate any point on the earth’s surface. This is done by sensing radio signals between the satellites and the receiver on the earth, with the times of transmission and reception recorded. The distances are then calculated. Only three satellites are needed to pinpoint the position of the receiver on the earth. Relativistic effects must be taken into account arising both from special relativity (time dilation: moving clocks on the satellites run slower than clocks at rest on the surface of the earth) and from general relativity (gravitational time dilation/gravitational frequency shift: when viewed from the surface of the Earth, clocks on the satellites appear to run faster than identical clocks on the surface of the earth). The combined effect (the special relativistic correction and the general relativistic correction) is that the clocks on the satellites run faster than identical clocks on the surface of the earth by 38.4 microseconds per day. The clocks thus need to be adjusted by about 4 x 10-10s per day. If this factor is not taken into account, the GPS system ceases to function after several hours. This provides a stunning verification of relativity, both special and general.

Neil Ashby dedicates his paper to the GPS:

Picture37

and gives a critical reason why the equivalence principle is indeed relevant. Consider again the GPS (global positioning system) or generally, Global navigation satellite systems (GNNS). For the GPS or GNNS, the only gravitational potential of significance is that of the earth itself. The earth and the satellites fall freely in the gravitational field of the sun (and external bodies in the solar system). Hence, according to the equivalence principle one can define a reference system which is locally very nearly inertial (with origin at the earth’s center of mass). In this locally inertial coordinate system (ECI) clocks can be synchronized using constancy of the speed of light (remember that special relativity is incorporated into general relativity as a model of space-time experienced locally by an observer in free fall):

Picture38

One writes an approximate solution to Einstein’s field equation and obtains that clocks at rest on earth

Picture39

run slow compared to clocks at rest at infinity by about seven parts in 1010.

Unless relativistic effects on clocks [clock synchronization; time dilation, the apparent slowing of moving clocks (STR); frequency shifts due to gravitation, gravitational redshift(GTR)] are taken into account, GPS will not work. GPS is thus a huge and remarkable laboratory for applications of the concepts of special and general relativity. In addition, Shapiro signal propagation delay (an additional general relativistic effect) and spatial curvature effects are significant and must be considered at the level of accuracy of 100 ps of delay. Ashby mentions another effect on earth that is exactly cancelled:

Picture41

Wesson in this paper:

תמונה1

presents the standard explanation one would find in most recent textbooks on general relativity:

תמונה1

The Christoffel symbols are also used to define the Riemann tensor, which encodes all the relevant information about the gravitational field. However, the Riemann tensor has 20 independent components, and to obtain field equations to solve for the 10 elements of the metric tensor requires an object with the same number of components. This is provided by the contracted Ricci tensor. This is again contracted (taking its product with the metric tensor) to obtain the Ricci curvature scalar.  This gives a kind of measure of the average intensity of the gravitational field at a point in space-time. The combination of the Ricci tensor and the Ricci scalar is the Einstein tensor and it comprises the left hand-side of Einstein’s field equations.

At every space-time point there exist locally inertial reference frames, corresponding to locally flat coordinates carried by freely falling observers, in which the physics of general relativity is locally indistinguishable from that of special relativity. In physics textbooks this is indeed called the strong equivalence principle and it makes general relativity an extension of special relativity to a curved space-time.

Wesson then writes that general relativity is a theory of accelerations rather than forces and refers to the weak equivalence principle:

תמונה3

As said above, Einstein noted that if an observer in free fall lets go of any bodies, they remain relative to him, in a state of rest or uniform motion, regardless of their particular chemical and physical nature. This is the weak principle of equivalence: The worldline of a freely falling test body is independent of its composition or structure. The test body moves along a geodesic line. The geodesic equation is independent of the mass of the particle. No experiment whatsoever is able, locally, to distinguish a gravitational field from an accelerating system – the strong principle of equivalence (see Ryder above). A freely falling body is moving along a geodesic line. However, globally space-time is curved and this causes the body’s path to deviate from a geodesic line and to move along a non-geodesic line. Hence we speak of geodesics, manifolds, curvature of space-time, rather than forces.

José G. Pereira explains the difference between curvature and torsion (and force) (see paper here):

Picture17

General relativity is based on the equivalence principle and geometry (curvature) replaces the concept of force. Trajectories are determined not by force equations but by geodesics:

Picture26

How do we know that the equivalence principle is so fundamental?  Gravitational and inertial effects are mixed and cannot be separated in classical general relativity and the energy-momentum density of the gravitational field is a pseudo-tensor (and not a tensor):

Picture18

General relativity is grounded on the equivalence principle. It includes the energy-momentum of both inertia and gravitation:

Picture19

In 1928 Einstein proposed a geometrized unified field theory of gravitation and electromagnetism and invented teleparallelism. Einstein’s teleparallelism was a generalization of Elie Cartan’s 1922 idea. Picture20

According to Pereira et al: “In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. On the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence”.

See his paper with R. Aldrovandi and K. H. Vu: “Gravitation Without the Equivalence Principle”, General Relativity and Gravitation 36, 2004, 101-110.

Petkov explains in his paper: (see further above)

Picture21

the following:

Picture22

The bottom line is that classical general relativity is fundamentally based on the equivalence principle. One cannot reject Einstein’s route to the theory of general relativity.

 

 

 

 

 

 

 

The Road to Relativity and Dishonesty in Scientific Research

Prof. Hanoch Gutfreund, the former president of the Hebrew University of Jerusalem, has been plagiarizing my papers and book. To call prof. Gutfreund prolific in plagiarizing my work would be an understatement. The serious damages I sustain from this in Israel are enormous, actually it is far more damaging than I previously thought. I wrote to the president of the Hebrew University in Jerusalem but the latter has not even answered my email. Hence it seems he fails to take responsibility for damage caused by plagiarism. I am not surprised.

In the book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity” (an annotated facsimile of Einstein’s original handwritten manuscript on general relativity and explanation of Einstein’s manuscript and equations), co-authored by prof. Jürgen Renn, prof. Gutfreund writes:

cosmo

Prof. Gutfreund has picked this passage with only slight changes from my 2013 paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013.

My name is not mentioned in note 4:

notes

Compare the above paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity, to the abstract of my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life”:

gamow2

gamow

And compare the penultimate paragraph from prof. Gutfreund’s book, The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized my paper, received the citations.

Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016: “An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

Gamow

It is quite obvious the Prof. Gutfreund has effectively paraphrased the passage from my paper. On November 30, 2015,  Prof. Gutfreund said in his plenary lecture, “100 years of General Relativity – What are we Celebrating?” At the Berlin Conference: A Century of General Relativity:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

My second bookGeneral Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists (published on December 1, 2015) has a whole chapter dedicated to Einstein’s “biggest blunder”. This chapter is based on my 2013 ArXiv paper: “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

gut3

Hence, plagiarism of my 2013 paper on Albert Einstein and George Gamow causes damage to my second book and to my academic status.

In addition, Prof. Gutfreund writes in The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity”:

gut

A circle around the origin of coordinates is a rotating disk (in his 1916 paper “The Foundation of General Relativity”, Einstein calls the disk “a circle around the origin”).

In the preceding passage prof. Gutfreund have paraphrased a passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

disk1

 

disk2

and from my 2014 paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014 [Equation (70) is my equation (6) and equation (71) is my equation (11)]:

gut2

Towards the end of his 1916 paper, “The Foundation of General Relativity”, Einstein demonstrates that the gravitational field changes spatial dimensions and the clock period. However, nowhere does Einstein directly relate the rotating disk story to the  above derivation. I have invoked this interpretation of Einstein’s paper. Einstein writes:

Ein5 Ein4

Digital Einstein

On November 30, 2015, Prof. Gutfreund lifted another passage from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story” and changed a word here and there, in his plenary lecture, “100 years of General Relativity – What are we Celebrating? at the Berlin Conference: A Century of General Relativity:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

In the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv, 1411.7370v [physics.hist-ph], 26 Nov, 2014, I wrote:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

He could have though picked the idea from my 2012 paper, Weinstein, Galina, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild.jpg

Einstein’s equations in his 1916 paper, “The Foundation of General Relativity”:

Schwartz1

Schwartz2

Schwartz3

In my book, General Relativity Conflict and Rivalries. Einstein’s Polemics with Physicists  I have also developed my previous ideas from my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”.

 

 

 

 

 

My work has been plagiarized at the Century of General Relativity conference

conference Berlin

You often think that if your papers and books are good, conferences all around the world will invite you to present them. How can you measure how influential your work is? The answer is simple: The more your papers are interesting, the greater the odds become you will not be invited to conferences, and your papers will be plagiarized at a conference by a professor extraordinarius. He will present your work as his own and use your ideas without mentioning your name in his conference speech. Can you imagine your reaction to later hearing his lecture on the web site of the Max Planck Institute for the History of Science in Berlin? “Oh my, these are my words! This cannot be true!” The organizers of the Berlin Century of General Relativity and MPIWG conference  failed to invite me to lecture at this international conference to celebrate 100 years of general relativity, a conference I should have gone to. But it turns out that my work on Einstein is so influential that professor Hanoch Gutfreund from the Hebrew University of Jerusalem gave the main or plenary evening lecture at the Century of General Relativity conference, “100 years of General Relativity – What are we Celebrating?”, and he made use in his lecture of passages I wrote two and four years ago and failed to mention my name. He has plagiarized content from my papers for his lecture. “O human race, born to fly upward, wherefore at a little wind dost thou so fall?” Dante Alighieri. I always felt there was something special in my papers because 10,000 people have downloaded my work. However, I don’t exactly feel flattered. I’m grossed out! I am completely disappointed. People have their head in the sand when my work is plagiarized in a big conference.

רן

קוראים 10000

The comparison between the original, my work, and citations from Prof. Gutfreund’s talk will speak for itself.

ג2

Professor Hanoch Gutfreund’s lecture presented Einstein’s road to general relativity (the genesis of general relativity) and the formative years of general relativity (a term coined by Prof. Gutfreund and Prof. Jürgen Renn). Six times he lifted ideas, phrases and lines from my work.

1. Einstein does not use the Schwarzschild Solution in his 1916 Review Paper.

Professor Gutfreund speaks about things Einstein could have done: “He could have done it… we know that he could have done it”. In this respect he mentions Einstein and the Schwarzschild solution:

“Another thing which he could have done. So he already knew the Schwarzschild solution, because the Schwarzschild correspondence is in December. He wrote this paper [review paper, 1916] later. He submitted it only in March. So he could have used this Schwarzschild solution who showed a simpler derivation of the motion of the perihelion and of the bending of light and he did not do it”.

ג3

ג4

It seems Prof. Gutfreund have picked the above passage from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012:

Scwarzschild

Einstein’s 1916 Equations:

Schwartz1

Schwartz2

Schwartz3

In addition, the above passage from prof. Gutfreund’s speech had been previously explained in great detail in my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, published in 2014. A year before Prof. Gutfreund’s lecture at the Century of General Relativity conference in Berlin, I wrote in the abstract of my paper, “Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story”, ArXiv: 1411.7370v [physics.hist-ph], 26 Nov, 2014:

“On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein’s field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein on the gravitational field of the sun, as well as Einstein’s field equations from the November 18, 1915 paper. On December 22, 1915 Schwarzschild told Einstein that he reworked the calculation in his November 18 1915 paper of the Mercury perihelion. Subsequently Schwarzschild sent Einstein a manuscript, in which he derived his exact solution of Einstein’s field equations. On January 13, 1916, Einstein delivered Schwarzschild’s paper before the Prussian Academy, and a month later the paper was published. In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution to Einstein’s November 18, 1915 field equations. Einstein preferred in his 1916 paper to write his November 18, 1915 approximate solution upon Schwarzschild exact solution (and coordinate singularity therein).”

I demonstrate in my paper that in his 1916 review paper, “The Foundation of the General Theory of Relativity”, Einstein used Huygens principle and the first order approximate solution to his vacuum field equations from the November 18, 1915 perihelion of Mercury paper to derive bending of light, the deflection of a ray of light passing by the sun. I end my paper by saying: “Einstein ended his paper with the final equation from his November 18 paper, the equation for the perihelion advance of Mercury in the sense of motion after a complete orbit. And he only mentioned in a footnote, ‘With respect to the calculation, I refer to the original treatments’: Einstein’s November 18 paper and Schwarzschild’s 1916 paper”. Here are two paragraphs from my own paper:

שוורצשילד1

שוורצשילד2

I wrote above: “In March 1916 Einstein submitted to the Annalen der Physik a review article on the general theory of relativity, “The Foundation of the General Theory of Relativity”. The paper was published two months later, in May 1916. The 1916 review article was written after Schwarzschild had found the complete exact solution (8) to Einstein’s November 18, 1915 field equations. Even so, in his 1916 paper, Einstein preferred not to base himself on Schwarzschild’s exact solution… and he returned to his first order approximate solution (6) from his November 18, 1915 paper”.

ג1

Einstein preferred in his 1916 review paper to write his November 18, 1915 approximate solution upon the Schwarzschild exact solution because he objected to the “Schwarzschild singularity”. Einstein repeatedly spoke against the Schwarzschild singularity and stated the impossibility of the Schwarzschild singularity.

2. Einstein and the Riemann tensor.

In his talk Professor Gutfreund concentrated on Einstein’s mistakes. In describing Einstein’s mistakes prof. Gutfreund said:

“The Riemann tensor is not a tensor of curvature. There is no affine connection. There is no parallel transport, all that, all the geometrization that is the trademark of the whole theory, that was not a presupposition that led him to the final results. He could have done it, maybe in another step. How could we know that he could have done it?

In 1914 he wrote another review article that was the review article of the Entwurf theory, a long article, he wrote it when he was confident that this was the correct theory; and there where he gets to the point where he has to explain covariant differentiation, he makes a remark: I know that Levi-Civita told us how to do it this way, but I prefer to do it differently, and this differently is abominable. I can tell you. If you look at the text how it is done, and when he did his 1916 review [article] he followed almost word by word except in that chapter where the new Lagrangian has to appear, except there he followed exactly what he did, so he could have done it”.

ג6

To begin with, this explanation combines two unrelated elements. The second part of the above passage seems to represent incorrectly a paragraph from my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916”, ArXiv: 1201.5353v1 [physics.hist-ph], 25 January, 2012. In 2012 I sent this paper to prof. Gutfreund.

The opening remarks of my paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor II: November 1915 until March 1916” (pp. 1-2), deal with Einstein’s 1914 review article and the comment he later made. Einstein had published a comprehensive review article dealing with his Entwurf  theory. On page 1041, he presented the Ricci tensor. On pages 1042 he found a problem with the Ricci tensor. Evidently he did not yet realize that the solution was to restrict himself to unimodular transformations. On page 1053 he presented the Riemann-Christoffel tensor. He did not use this tensor in his 1914 Entwurf field equations. That was the reason why the presentation of this tensor in 1914 was very brief. Of course the reason was also page 1041. In his first talk on the general theory of relativity (November 4, 2015), Einstein postulated that only unimodular transformations were allowed. This solved the problem with the 1914 Ricci tensor (page 1041). He wrote the Riemann-Christoffel tensor, obtained the Ricci tensor G and a gravitational tensor R. The field equations were restricted to unimodular transformations. He then wrote the following remark: the Ricci and Levi-Civita fundamental tensor of page 1041 could be written in a different form, it could be obtained from the Riemann-Christoffel tensor. He explained that he had given this proof in his 1914 paper on page 1053 and had followed this root in 1912 in the Zurich Notebook. Hence, Einstein made the remark (comment) – not in the 1914 Entwurf paper – but rather in the November 4, 1915 paper; and the remark referred to the field equations formulated in a non-Lagrangian form. I explain this in my 2012 paper:

2012-1

2012-2

The first part of Prof. Gutfreund’s explanation represents Prof. John Stachel’s memorable phraseology, the importance of “the affine connection”. Prof. Stachel explains that until 1912, Einstein lacked the Riemanian geometry and the tensor calculus as developed by the turn of the century, i.e., based on the concept of the metric tensor; and after 1912 when he was using these, he then lacked more advanced mathematical tools (the affine connection); these could be later responsible for inhibiting him for another few years. Judged from the historical point of view of his time, Einstein did not make a mistake, because he lacked the appropriate mathematical tools. Actually with hindsight the story is more complicated. What was eventually mere coincidence for Einstein would later turn to be a consequence derived by new mathematical tools, the affine connection, which was invented after Einstein had arrived at generally covariant field equations. (See Stachel, John, Einstein from ‘B’ to ‘Z’, 265, 304-306.

The above explanation is from my paper: “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, ArXiv: 1202.2791v1 [physics.hist-ph], 13 February, 2012, p. 20):

stachel

Finally, following the November 4, 1915 field equations, Einstein wrote the 1914 Entwurf Lagrangian and adjusted in 1915 and in 1916 his Entwurf 1914 variational formalism. In section 12 of the 1916 review article, Einstein started from the 1914 equations he had written on page 1053, he contracted the Riemann-Christoffel tensor and obtained the Ricci tensor and the field equations in unimodular coordinates; he also wrote the field equations in Lagrangian form.

In my 2012 paper, “From the Berlin ‘Entwurf’ Field equations to the Einstein Tensor III: March 1916”, ArXiv: 1201.5358v1 [physics.hist-ph], 25 January, 2012, I pinpoint the differences and similarities between Einstein’s first 1914 review paper and second 1916 review paper, “The Foundation of the General Theory of Relativity”. I discuss the differences and similarities among Einstein’s 1914 and 1916 formulations and Einstein’s 1916 manuscript “The Foundation of the General Theory of Relativity” and 1916 review paper, “The Foundation of the General Theory of Relativity”.

3. Friedmann’s model and Einstein’s reaction to it.

Towards the end of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund lifted phrases from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, ArXiv: 1309.6590v [physics.hist-ph], 26 Sep. 2013.

In 1922, Alexander Friedman published a model of an expanding universe. Einstein was not satisfied with this model and replied by a note; he thought he found a mistake in Friedmann’s results, which when corrected Friedmann’s solution would give Einstein’s good old static model. Friedmann sent Einstein his calculations and asked him to publish a correction to his statement. Einstein was willing to correct the slip in his previous note. Prof. John Stachel discovered that in the draft to the note to the editor Einstein wrote something quite different.

Prof. Gutfreund explained in his lecture:

“But here we have you see the letter, the letter to the editor, the angry letter. You see the last sentence is crossed out. So I will tell you what is it the last sentence. The last sentence says ‘It follows that the field equations, besides the static solution’, there are such static solution and so on. But then what is crossed out is ‘but a physical significance can hardly be attributed to them’.”.

And Professor Gutfreund showed the following slide:

“It follows that the field equations, besides the static solutions, permit dynamic (that is varying with time coordinates) spherically symmetric solutions for the spatial structure. He added the words: ‘but a physical significance can hardly be ascribed to them’, which he crossed out before sending the note to the editor”.

snake3

I see phrases here that come from my work and Prof. Stachels’ bookEinstein from B to Z, 2002, for which there is no attribution. I recognize my own words: “but a physical significance can hardly be ascribed to them”. Prof. Stachel wrote: “to which a physical significance can hardly be ascribed”. Hence, prof. Gutfreund did not even bother to read prof. Stachel’s original paper; he simply lifted phrases from my paper. His above citation and slide contain exact words from my own published paper but he does not give attribution to me. I wrote in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” the following:

פרידמן

snake

Therefore, in my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote the following (pp. 39-40):

“Einstein was willing to correct the slip in his previous note: ‘In my previous note I have criticized the cited work [Friedmann’s 1922 work, ‘On the curvature of Space’], but my objection, as I became convinced by Friedmann’s letter communicated to me by Mr. Krutkov, rested on an error in my calculations. I consider that Mr. Friedmann’s results are correct and shed new light. It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure’. 126

In fact, Einstein was little impressed by Friedmann’s mathematical models. In Einstein’s draft of the second note to the Zeitschrift für Physik, in which he withdrew his earlier objection to Friedmann’s dynamical solutions to the field equations, he crossed-out the final last section of the sentence, ‘a physical significance can hardly be ascribed to them’, before sending the note to the editor of the Zeitschrift für Physik, thus Einstein originally wrote in the draft: ‘It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, but a physical significance can hardly be ascribed to them’.127”.

I placed the endnotes at the end of my paper. Footnotes and endnotes are a bother to read and are rarely read. People abstain from reading endnotes. However, endnote 126 refers to Einstein’s (German) paper and endnote 127 in the above passage refers to the paragraph from Prof. Stachel’s paper, “Eddington and Einstein”, Einstein from ‘B’ to ‘Z’, p. 469:

Friedmann

Prof. Stachel writes:

“Friedmann’s paper came to Einstein’s attention. He thought he had found a mathematical flow in Friedmann’s argument, and said so in print. When he became convinced that the error was his not Friedmann’s, he retracted his mathematical objection, but stuck to his static cosmological model. How little impressed he was by Friedmann’s models can be seen from the final clause of his draft retraction, which (fortunately for him) Einstein deleted before it was printed:

It follows that the field equations, besides the static solution, permit dynamic (that is, varying with the time coordinate) spherically symmetric solutions for the spatial structure, [to which a physical significance can hardly be ascribed.],

The bracketed portion being crossed out in the manuscript”.

Compare prof. Gutfreund’s slide to the passage from my 2013 paper. Professor Gutfreund uses my phrases verbatim in his slide with no citation:

גוטפרוינד

Surely prof. Gutfreund did not read my endnote 127, otherwise he would have mentioned prof. John Stachel’s paper in his lecture, because when there is acknowledgment in prof. Gutfreund’s talk, the impression is of a wholesale attribution to prof. Jürgen Renn and other notable Einstein scholars. This is far from being the only sources for professor Gutfreund’s lecture. Indeed, in his lecture he mentions prof. John Stachel’s paper on Hilbert’s competition with Einstein (priority dispute) written with prof. Jürgen Renn and prof. Leo Corry, while discussing Einstein’s competition with David Hilbert:

“He was concerned that he will be outrun, and was concerned that he will be outrun by David Hilbert; and the question is who gets there first. Now had Einstein read the article by Jürgen Renn, and John Stachel and Leo Corry, he wouldn’t have to worry”.

Hilbert2 4. Demarcation between “Mach’s idea” and ‘Mach’s principle”

After presenting the genesis of general relativity, prof. Gutfreund briefly reviewed Mach’s principle. Here I highlight what I see as plagiarized demarcation between “Mach’s idea” and “Mach’s principle”. This demarcation is found in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” and in my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”. I also briefly discuss this matter in my first book, Einstein’s Pathway to the Special Theory of Relativity.

In his lecture Prof. Gutfreund explained:

“So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. Now at the outset I want to tell you that everything that Einstein did in those years in this context and in other until 1929, and maybe over, it was a little longer, was to defend his strong belief in Mach’s criticism of Newton. Mach’s criticism, I mean there is no absolute space, all inertial effects are due to all the masses in the universe, there is no inertia, except determined by all the masses of the universe. This is Mach’s idea. I am not calling it a principle yet. This is Mach’s idea ….”

When prof. Gutfreund explained the difference between Mach’s idea and Mach’s principle, he raised his hand and pointed his finger to the audience:

finger

Mach3

Professor Gutfreund then spoke about Einstein’s exchange of letters with de Sitter, Felix Klein and Hermann Weyl and said:

“And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”.

And he showed the following slide:

Mach's ideas

In my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I demarcated between “Mach’s ideas” and “Mach’s Principle”:

Mach's idea

I Therefore write:

“Einstein desired to eliminate what he called the “epistemological weakness” [“erkenntnistheoretischen Schwächen”] of Newtonian mechanics, the absolute space, from physics; he invented a world, finite and spatially closed static universe, bounded in space, according to the idea of inertia having its origin in an interaction between the mass under consideration and all of the other masses in the universe, which he called “Mach’s ideas” (obviously not Ernst Mach’s ideas as has been generally recognized and as Mach himself pronounced them). This would be later called by Einstein “Mach’s principle” (more precisely Mach-Einstein principle)”.

In my 2012 paper “Einstein’s 1912-1913 struggles with Gravitation Theory: Importance of Static Gravitational Fields Theory”, I explain on page 22 the difference between “Mach’s idea” and Mach’s principle”:

Mach2

I therefore write:

“Einstein ended section §1 with the conclusion that the momentum and kinetic energy are inversely proportional to c. Or, the inertial mass is m/c and independent of the gravitational potential.116 This conforms to Mach’s idea that inertia has its origin in an interaction between the mass point under consideration and all of the other mass points. Einstein explained that if other masses are accumulated in the vicinity of the mass point, the gravitational potential c decreases. And then the quantity m/c increases which is equal to the inertial mass. In the static fields theory Einstein presented the predecessor to Mach’s principle.117“.

In my book, Einstein’s Pathway to the Special Theory of Relativity I again say:

Machbook

Prof Gutfreund says: “So this is a great Challenge, this is what happens, so he talks about the general theory of relativity and that he writes after visiting De Sitter in Leiden. … And then Einstein makes a bold step. He elevates Mach’s idea into a principle. No longer a property of the theory, but a property of an acceptable solution. Only solutions which satisfy Mach are physically acceptable”. And he presents the above slide.

In my paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” I wrote the following:

Mach's ideas3.jpg 5. Besso as Einstein’s Sounding Board

Quite at the beginning of his lecture, “100 years of General Relativity – What are we Celebrating?”, prof. Gutfreund borrowed passages from my 2012 paper, “Albert Einstein’s Methodology”. Prof Gutfreund said in his lecture:

“Einstein with his very good friend usually a sounding board, in this case, a collaborator, in this case when they worked together. Usually he was Einstein’s sounding board. They wrote… the Einstein-Besso manuscript… and in that document they calculated the perihelion motion”.

Besso3

My own words in “Albert Einstein’s Methodology” are:

Besso0

 

Besso1

The Philosophy of Science Portal added a link to my paper, “Albert Einstein’s Methodology”.

Hence, in my 2012 paper, “Albert Einstein’s Methodology”, ArXiv: 1209.5181v1 [physics.hist-ph], 25 September, 2012, I write:

“Later in 1913 Besso came to Zurich and actively participated in solving the Einstein-Grossman (‘Entwurf’) gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of the perihelion of Mercury. The young Einstein may have considered Besso as his sounding board, but was Besso still Einstein’s sounding board in 1913?”

I explain in my paper that in 1913, Besso still functioned as Einstein’s sounding board while they were both working on the Einstein-Besso manuscript:

“Indeed when Einstein wrote Besso a series of letters between 1913 and 1916, and described to him step by step his discoveries of General Relativity, Besso indeed functioned again as the good old sounding board as before 1905”.

I also wrote about Besso in my book, Einstein’s Pathway to the Special Theory of Relativity, April 2015:

Besso

Therefore, in my book, Einstein’s Pathway to the Special Theory of Relativity (Newcastle, UK: Cambridge Scholars Publishing), April 2015, I have dedicated a whole chapter to Einstein’s “sounding boards”. In the section explaining Michele Besso’s role as Einstein’s sounding board I write:

“Even in 1913, Besso was still Einstein’s sounding board. In June 1913, Besso visited Einstein in Zurich and actively participated in solving the Einstein-Grossmann Entwurf gravitation equations with Einstein. They both tried to find solutions to the problem of the advance of mercury’s perihelion in the field of a static sun. Their join work is known as the Einstein-Besso manuscript”.

Prof. John Stachel was the first to show that Michele Besso acted as Einstein’s sounding board. The need to put ideas into communicable form led Einstein to search throughout his early life for people to act as sounding boards for his ideas. See his book: Einstein’s Miraculous Year. Five Papers that Changed the Face of Physics (Princeton: Princeton University Press). Following discussions with prof. Stachel I have extended his ideas into the above expression.

I really hoped that some conference would ask me to give a talk about my work, “Albert Einstein’s Methodology”. I thought I had a philosophical paper worth talking about at a conference. Obviously, now that prof. Gutfreund lifted my unique expression of prof. Stachel’s idea of sounding boards from this paper there is no point presenting it at a conference.

6. Cosmological Constant Biggest blunder

A thread that runs through Professor Gutfreund’s entire talk is that Einstein had made many mistakes on his road to general relativity and cosmological model. Towards the end of his talk prof. Gutfreund mentions Einstein’s biggest mistake:

“But you know there is this Myth that Einstein when he abandoned the cosmological constant he said this is the worst error that I made. There is no evidence for that. Probably he never said that”.

In prof. Gutfreund’s book with prof. Jürgen Renn, The Road to Relativity, prof. Gutfreund further explains this:

cosmo

notes

Compare the above paragraph from prof. Gutfreund’s book The Road to Relativity to the abstract of my 2013 paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the “biggest blunder” he ever made in his life?”, ArXiv: 1310.1033v [physics.histph], 03 Oct, 2013:

gamow

gamow2

And compare the penultimate paragraph from prof. Gutfreund’s book The Road to Relativity to two paragraphs from my paper, “George Gamow and Albert Einstein: Did Einstein say the cosmological constant was the ‘biggest blunder’ he ever made in his life?”:

blunder1

blunder2

In 2016 I received this message from ResearchGate:

gate

My paper gained traffic but no citations, but prof. Gutfreund, who plagiarized the abstract of my paper, received the citations. Allen I. Janis writes in his review: “The Road to Relativity: The History and Meaning of Einstein’s ‘The Foundation of General Relativity’.” American Journal of Physics 84, 2016:

“An interesting sideline in this chapter has to do with the frequently heard story that Einstein called his introduction of the cosmological constant the biggest mistake of his life. It seems there is no evidence that Einstein ever said or wrote this, and that it is in fact an invention of George Gamow”.

cite

Gamow

cheers

The audience of prof. Gutfreund’s lecture, “100 Years of General Relativity – What Are We Celebrating?”, consisted of top experts and known professors in my field. They clapped and cheered when he finished to speak. They seemed to like his lecture. I wish they knew that parts of professor Hanoch Gutfreund’s lecture were based on my papers and I worked so hard to write them.

7. David Hume and Ernst Mach’s influence on Einstein

At the Thursday round table speech Prof. Gutfreund seems to also lifted something from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”. At the Berlin MPIWG conference round table discussion about general relativity, professor Gutfreund explained:

“But then in his [Einstein’s] Autobiographical Notes his most, I mean this is for the philosophers of science here, may be his most blant [blatant], most explicit departure from empiricism, you know until almost end he always mentions Mach together with Hume. The two of them who showed him the way to general relativity. I quote”.

manspla

“I mean this is for the philosophers of science here”, Prof. Gutfreund said while pointing to where the philosopher of science prof. Yemima Ben Menahem was sitting.

Mach and HUme

It is fairly obvious that the explanation about Hume and Mach showing Einstein the way to general relativity was either lifted from my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world” or from my book, Einstein’s Pathway to the Special Theory of Relativity.

Hume and Mach showing Einstein the way to general relativity is a mistake in my 2013 paper which prof. Gutfreund seems to have reproduced in his round table discussion. Actually, in 1949 Einstein explicitly expressed in his Autobiographical Notes an intellectual debt to Hume and Mach’s philosophical writings in his discovery of special relativity. However, in my 2013 paper, “The Mythical Snake which Swallows its Tail: Einstein’s matter world”, I wrote about Hume’s influence on the elder Einstein and I said that Hume’s influence on Einstein was greater than Mach’s ideas (general relativity and cosmology):

Hume

I thus write:

“The elder Einstein could not remember how far Mach’s writings have influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the general theory of relativity. Indeed the elder Einstein often wrote that the influence of David Hume was greater on him. Finally, a year before his death Einstein silently dropped Mach’s principle in itself”.

The philosophy of Hume and Mach had an important influence on Einstein’s development and discovery of special relativity. Mach’s ideas about the relativity of inertia influenced Einstein on his road to general relativity. If Professor Gutfreund “quotes”, then I shall quote as well. Einstein writes in his Autobiographical Notes (1949, p. 53):

Einst

“One sees that in this paradox [of Einstein chasing a light beam] the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, or of simultaneity, was rooted unrecognized in the unconscious. To recognize clearly this axiom and its arbitrary character already implies the essentials of the solution of the problem. The type of critical reasoning required for the discovery of this central point was decisively furthered, in my case, especially by the reading of David Hume’s and Ernst Mach’s philosophical writings”.

However, in my first book, Einstein’s Pathway to the Special Theory of Relativity, on page 292, I tried to correct my mistake in my 2013 paper, and I combined the influence of David Hume’s and Ernst Mach’s philosophy on Einstein with Mach’s ideas and Mach’s principle:

Mach's principle

I therefore write in my book:

“The older Einstein could not remember how far Mach’s writings influenced his work in the same way as could the young Einstein who was inspired by Mach’s ideas when creating the theory of relativity. Indeed, the older Einstein often wrote that David Hume was a greater influence on him. We should remember that in 1948 Einstein saw Mach’s weakness in his belief more or less that science consists in the mere “ordering” of empirical material. Mach, according to Einstein, misjudged the free constructive element in the formation of concepts. He believed that in some sense theories arise by discovery and not invention (Einstein to Besso, January 6, 1948, Einstein and Besso 1971, Letter 153; see Section 1.1). Finally, a year before his death, Einstein silently dropped Mach’s principle in itself…”.

Prof. Gutfreund seems to have combined in his round table discussion my mistake from 2013 and the above so-called correction.

8. Einstein and Poincare.

Finally, it is not the first time that prof. Gutfreund has endorsed my ideas and presented them as his own. In August 2015, at the World Science Conference – Israel (WSCI), young students from all around the world and 15 Nobel laureates were invited to the WSCI conference. Prof. Gutfreund was part of a panel discussion at the WSCI conference on “Eureka moment!”. He happened to be sitting next to Nobel Laureates prof. Arieh Warshel, prof. Harold Kroto and prof. Sidney Altman. Later the Lectures and panels were uploaded to the website of the homepage of the WSCI conference.

I heard prof. Gutfreund speaking about Einstein’s 1916 interview (“exchange of readers” [letters]) with Max Wertheimer. He told the audience about Einstein describing to Wertheimer how the theory of general relativity occurred to him. Actually Wertheimer discussed with Einstein the development of his special theory of relativity and not the genesis of general relativity and the road to general relativity. Prof. Gutfreund spoke about Einstein’s creativity and Poincaré’s creativity and his Eureka moment, something he had read in my book, Einstein’s Pathway to the Special Theory of Relativity. He told the story of Poincaré who could not find the solution to his problem. Poincaré then took part in an excursion. The events of the trip made him forget his mathematical work. He entered a bus; the moment he put his foot on the step, the idea came to him, without anything in his former thoughts seeming to have prepared him for it.

פואנקרה5

Prof. Gutfreund told the audience the following, here is the citation from his lecture:

“Einstein had a very close friendly relationship with Max Wertheimer. Max Wertheimer is one of the founding fathers of gestalt psychology, and they exchanged readers [letters]. Max Wertheimer even wrote a book about creativity and they explored this idea of creativity and debation [debated] time, and then this ha-moment according, so I mean the classical example of an ha-moment again according to his, to Einstein’s testimony is this happiest thought in retrospect. There is another ha-moment, because you see, a ha-moment and Eureka does not have always to be something which turns out to be correct. Einstein had an ha-moment in something which turned out completely wrong at the end, that is something I refer to, one day he writes to Lorentz and this I have a theory which is a dark spot there and the next day he writes I am now completely satisfied that this is true. But that was completely wrong. But the person who really discussed it is another physicist, a polyglot of science and that is Poincaré, and Poincaré describes an ha-moment he was troubling with his idea whether it should be Lobachevski’s geometry, this kind of geometry, Euclidean geometry, and suddenly he gets on a bus and he describes the moment when he puts his foot on the step of the bus and suddenly it all comes to him and he runs home and writes it all. So you don’t have to run naked in the streets in an ha-moment. There are all kind of…”.

Compare this to the following several paragraphs from my own book, Einstein’s Pathway to the Special Theory of Relativity, April 2015. Prof. Gutfreund has lifted the Einstein-Wertheimer-creativity-Poincaré bus story discussion from my own book:

פואנקרה3

פואנקרה

פואנקרה2

 

פואנקרה4

Fools had ne’er less wit in a year, For wise men are grown foppish. They know not how their wits to wear, Their manners are so apish. King Lear, Act 1, scene 4.

FIN