איינשטיין ותורת הקוונטים Einstein and the Light Quantum

In 1905 Planck, a coeditor of the Annalen der Physik, accepted Einstein’s paper on light quanta for publication, even though he disliked the idea of “light quanta”. Einstein’s relativity paper was received by the Annalen der Physik at the end of June 1905 and Planck was the first scientist to notice Einstein’s relativity theory and to report favorably on it. In the 1905 relativity paper Einstein used the notion, “light complex”, and he did not invoke his novel quanta of light heuristic with respect to the principle of relativity. He chose the language “light complex” for which no clear definition could be given. But with hindsight, in 1905 Einstein made exactly the right choice not to mix concepts from his quantum paper with those from his relativity paper. He focused on the solution of his relativity problem, whose far-reaching perspectives Planck already sensed. x

In the Electrodynamical part of the Relativity paper Einstein considers the system K. Very far from the origin of K, there is a source of electromagnetic waves. Let part of space containing the origin of coordinates 0 be represented to a sufficient degree of approximation by plane waves. Einstein asks: What characterizes the waves when they are examined by an observer at the same point 0, but at rest in the system k, moving relatively to K with constant speed v? x

Einstein applies the Lorentz transformation and transformation equations for electric and magnetic fields to the equations of the plane electromagnetic wave with respect to K. He obtains the Doppler principle, i.e., the frequency of electromagnetic waves as it appears in the system k and K: f’/f.   x

Einstein then finds the amplitude of the waves as it appears in the system k; the amplitude of the electric or magnetic waves A or A’, respectively, as it is measured in the system K or in the system k. Einstein gives the equation for the square of amplitude, Pointing vector. x

We expect that the ratio of the square of the amplitude of a given light complex “measured in motion” and “measured at rest” would be the energy if the volume of a light complex were the same measured in K and k. However, says Einstein, this is not the case.  x

Einstein thus instead considers a spherical surface of radius R moving with the velocity of light. He is interested in the light energy enclosed by the light surface. No energy passes outside through the surface of the spherical light surface, because the surface and the light wave both travel with the velocity of light. He calculates the amount of energy enclosed by this surface as viewed from the system k, which will be the energy of the light complex relative to the system k. The spherical surface – viewed in the system k – is an ellipsoidal surface. If we call the energy of the light enclosed by this surface E when it is measured in system K, and E’ when measured in system k, we obtain the equation that relates between E and E’.  x

Einstein realizes that, “It is noteworthy that the energy and the frequency of a light complex vary with the observer’s state of motion according to the same law”. x

Namely, E’/E = f’/f.     x

John Stachel read my manuscript and said that this formula corresponds to that of the light quantum hypothesis, and in hindsight this supplies extra evidence for the later hypothesis. Einstein’s aim is to show that the equation E = hv that he uses in the quantum paper takes the same form in any inertial frame. That is, E = hv is transformed to E’ = hv’ and thus the relativity postulate is not violated.  x

I wrote in my manuscript that Rynasiewicz wrote in 2005 (and even before that) that, “Einstein wraps up his derivation with what is clearly an allusion to the light quantum hypothesis”. Rynasiewicz adds that “What he does not draw attention to there is the intimate relation of this result to the relative character of simultaneity”.  x

However, Stachel told me that he was the first to notice that in his relativity paper Einstein implicitly referred to the light quantum hypothesis and he told me to delete Rynasiewicz’s comment. x

Then in light of my manuscript Stachel wrote the following paragraph, which reflects my manuscript, and also the collected papers of Einstein, which he edited

Before submitting his 1905 special relativity paper, Einstein had submitted the light quantum paper – the only one of his 1905 papers he considered truly revolutionary. “On a Heuristic Viewpoint Concerning the Generation and Transformation of Light”, sent to the Annalen on March 17th, 1905, and received by the Annalen a day afterwards. Indeed Einstein wrote Habicht in May 1905 about this paper, “It deals with the radiation and energy characteristics of light and is very revolutionary”.  x

This paper extended the range of application of Planck’s 1900 quantum hypothesis. In order to explain his law of black body radiation, which had been well-verified empirically, Planck was forced to assume that oscillators interacting with the electromagnetic field could only emit and/or absorb energy in discrete units, which he called quanta of energy. The energy of these quanta was proportional to the frequency of the oscillator: E = hv. But Planck believed, in accord with Maxwell’s theory, that the energy of the electromagnetic field itself could change continuously. x

Einstein now showed that, if this formula were extended to the electromagnetic field energy itself, a number of phenomena involving interactions between matter and radiation, otherwise inexplicable classically, could now be simply explained with the help of these light quanta. x

But, he was at work on his relativity paper too; so the question naturally arose, if the equation E = hv holds in one inertial frame of reference, will it hold in all others. If not, then Einstein’s relativity principle would be violated. Since h, the so-called quantum of action, is a universal constant, the question reduces to: Do the energy and frequency of a light quantum transform in the same way in passing from one inertial frame to another. And this is just what he demonstrates in his paper. x

Hence, not wanting to introduce a discussion of his still-quite-speculative light quantum hypothesis into a paper which he regarded as simply an extension of well accepted classical ideas from mechanics to electromagnetism and optics, he confined his proof to the classical level. x

Instead of “light quanta”, in his proof he introduced the rather awkward term “light complex”, a term that he soon dropped. x

In my paper discussing relativity and light quanta I bring both opinions and I also refer to Einstein’s Collected Papers. x

HUJI, Lucien Chavan

paper abstract

פילוסופיה של הפיזיקה – טלפורטציה קוונטית, עוד שלב בדרך למחשב קוונטי ואולי גם לשיגור של סקוטי

ב-1993 קבוצה של ששה מדענים ביניהם צ’רלס בנט ואשר פרס פרסמו מאמר שכותרתו, “טלפורטציה של מצב קוונטי בלתי ידוע באמצעות ערוץ קלאסי וערוץ אפ”ר”. המאמר היה בבחינת מהפכה כי הוא התחיל את המחקר התיאורטי בטלפורטציה קוונטית. זהו מונח שמקורו במדע הבדיוני ופירושו: לגרום לעצם להעלם במקום אחד כאשר עותק מדויק שלו מופיע במקום אחר.

בשנים שלאחר מכן מדענים אחרים הדגימו טלפורטציה ניסויית במגוון מערכות: פוטונים בודדים, יונים כלואים וכולי. סבורים שלטלפורטציה הקוונטית יש עתיד שימושי בעיבוד מידע, תקשורת קוונטית ואולי אף היא תסייע בפיתוח מחשב קוונטי עתידי. אבל חובבי מדע בדיוני חולמים על יישומים אחרים לטלפורטציה והם וודאי יתאכזבו לשמוע שבעתיד הקרוב לא יהיה ניתן לשגר אנשים וגופים מקרוסקופיים אחרים. בעוד שטלפורטציה קוונטית מעבירה מצב קוונטי מחלקיק אחד לאחר, היא לא מעבירה מסה (המצב הקוונטי מתאר את הידע שלנו אודות החלקיק הקוונטי). בנוסף, המצב המקורי של החלקיק הקוונטי נהרס במהלך הטלפורטציה. כמובן שזה בגלל משפט אי השכפול, שלא מתיר יצירת שכפול של מערכת קוונטית נתונה וגם בגלל עקרון אי הודאות של הייזנברג, כפי שיוסבר בהמשך. לבסוף, לשיגור באמצעות טלפורטציה יש גבול מהירות סופית: ניתן לשגר באמצעות טלפורטציה במהירות שאינה עוברת את מהירות האור או במהירות האור, אך לא במהירות גבוהה ממנה – וזאת בהתאם לתורת היחסות הפרטית של איינשטיין.

המהלכים הניסויים:

A. Zeilinger, Quantum Teleportation, Scientific American, pp. 32-41. (2000).

וכאן וכאן ניסוי נוסף וכאן  וכאן.

בנט, פרס ושאר החוקרים סברו שניתן להשתמש בקורלציות בין זוגות חלקיקים קוונטיים בניסוי איינשטיין-פודולסקי-רוזן (אפ”ר), כלומר בשזירה קוונטית, להעברת מידע. הרי איינשטיין עצמו חשש שמע ניסוי אפ”ר יכול להעביר מידע בצורה “טלפאתית” (כלומר, במהירות גבוהה מזו של האור). אבל אנחנו יודעים שמעבר מידע מיידי באמצעות ניסוי אפ”ר הוא בלתי אפשרי. בנט חשב שאולי ניתן להשתמש בניסוי אפ”ר כדי להעביר מידע באמצעות “טלפורטציה”.

מצב שזור של שני חלקיקים מתאר מערכת קוונטית אחת במצב שבו החלקיקים מאבדים במובן מסוים מזהותם העצמית. המצב השזור לא מכיל מידע על החלקיקים הבודדים, אלא רק מציין ששני החלקיקים יהיו במצבים מנוגדים. פירושו שמדידה שמבוצעת על חלקיק אחד גורמת לחלקיק האחר להיות במצב הפוך. אין כל הגבלה על המרחק שבו החלקיקים יכולים להיות מרוחקים זה מזה. הם יכולים להיות במרחק עצום עד כמה שנרצה זה מזה; אבל משוואות מכניקת הקוונטים מנבאות, שכאשר מבוצעת מדידה בחלקיק אחד היא גורמת לחלקיק האחר להיות במצב הפוך. אפקט מוזר זה גרם לאיינשטיין לקרוא לניסוי אפ”ר “פעולה למרחוק של רוחות רפאים”.

בהתחלה חשבו שלא ניתן לממש טלפורטציה קוונטית: אם אנחנו רוצים לשבט או לשכפל במדויק עצם כאשר משגרים אותו למקום אחר, נצטרך לבצע שכפול של העצם בטרם נשגרו. כלומר, נצטרך למדוד את המיקום והתנע המדויקים של כל אטום ואטום בגוף; ורק אחר כך לשגר אותו ליעד הרצוי ולבסוף לבנות אותו מחדש על בסיס הוראות שמקבלים באמצעות ערוץ קלאסי ולא קוונטי. אבל השלב הראשון של המדידה הקפדנית הבו-זמנית של המיקום והתנע של כל אטום מפר ברגל גסה את עקרון אי הודאות של הייזנברג.

עקרון אי הודאות של הייזנברג אוסר עלינו לבצע מדידה מדויקת על מערכת קוונטית ולקבל מידע שלם על המצב הקוונטי שלה. לפי עקרון אי הודאות, ככל שנמדוד במדויק יותר את החלקיק הקוונטי, כך נפריע לו יותר על ידי תהליך המדידה. זאת עד אשר נגיע לנקודה מסוימת שבה כבר הפרענו לגמרי למצב הקוונטי המקורי של המערכת ועדיין לא חילצנו ממנה מספיק מידע כדי לבצע ממנה שכפול מדויק.

ps_star_trek_teleportation_1358514340_jpg_814x610_q85

ב-1993 בנט, פרס ושאר המדענים מצאו דרך לעקוף את ההגבלה הזו על היכולת לבצע עותקים של המצב הקוונטי של החלקיק.

נגיד שנותנים לאליס מערכת קוונטית, פוטון, והפוטון מוכן במצב קוונטי שהוא בלתי ידוע לאליס. אליס שואפת להעביר לבוב מספיק מידע אודות המערכת הקוונטית בכדי שהוא יוכל ליצור העתק ממנה. אילו לאליס הייתה ידיעה אודות המצב הקוונטי של הפוטון היה לה מספיק מידע כדי להעביר לבוב. אבל אין לה כל דרך לדעת אותו. אם אליס תמדוד את המצב הקוונטי של החלקיק המקורי שלה זה יגרום לאיבוד מידע כלשהו. במצב הזה בוב לא יוכל לשחזר את המצב של החלקיק.

לכן הדרך היעילה ביותר שבה אליס תספק לבוב מידע אודות החלקיק שלה A היא לשלוח לבוב את החלקיק עצמו A. אבל אם היא לא יכולה לשלוח את החלקיק המקורי היא יכולה לגרום לחלקיק להיות באינטראקציה עם חלקיק אחר B במצב ידוע (אנסילה). אחרי האינטראקציה, חלקיק B נותר במצב הלא ידוע של A ואילו החלקיק המקורי A של אליס – במצב הידוע. ככה החלקיק B מכיל מידע שלם אודות החלקיק A של אליס. אליס שולחת לבוב את מצב החלקיק B ולא את מצב החלקיק המקורי A ובוב משחזר את הפעולות שלה כדי להכין עותק מהמצב הלא ידוע של החלקיק A שלה. כדי שמשפט האי שכפול הקוונטי יתקיים המצב הלא ידוע המקורי של חלקיק A של אליס נהרס בתהליך: זוהי ההרחקה של המצב הלא ידוע מידיה של אליס והופעתו אצל בוב זמן מאוחר יותר. זהו הבסיס לתהליך הטלפורטציה. ישנה העברה של מידע קוונטי ממערכת אחת לשנייה אבל לא שכפול קוונטי. תהליך הטלפורטציה לא מתרחש מיידית, מכיוון שהוא דורש שליחת סיגנל קלאסי מאליס לבוב כדי שהוא ישחזר את העותק מהמצב הלא ידוע של חלקיק A של אליס.

ביתר פירוט, תהליך הטלפורטציה הסטנדרטי מורכב מחלק קלאסי ומחלק לא קלאסי; כלומר המידע אודות המצב של החלקיק המקורי של אליס נשלח בשני חלקים בערוץ קלאסי ובערוץ קוונטי ואחרי שבוב מקבל את שני חלקי המידע הוא משחזר את המצב הקוונטי של החלקיק המקורי של אליס:

1) הערוץ הלא קלאסי: בהתחלה מכינים שני חלקיקים 2 ו-3 במצב שזירה קוונטית, זוג אפ”ר (האנסילה). אליס שואפת להעביר לבוב מצב קוונטי בלתי ידוע של חלקיק, שאותו נכנה חלקיק 1. לכן יש לנו מערכת שכוללת את זוג חלקיקי האפ”ר 2 ו-3 ואת החלקיק עם המצב הקוונטי הבלתי ידוע לאליס, חלקיק 1, שאת המצב הקוונטי שלו אליס רוצה לשגר בטלפורטציה. בשלב זה זוג האפ”ר עדיין לא מכילים כל מידע אודות המצב הקוונטי המקורי של חלקיק 1. אם נבצע מדידה בחלקיק 2 או חלקיק 3 לא נקבל כל מידע אודות חלקיק 1. אליס מקבלת חלקיק אפ”ר אחד (חלקיק 2) ואילו בוב מקבל את חלקיק האפ”ר השני (חלקיק 3). רק בשלב הבא שוזרים קוונטית את המצבים הקוונטיים של מערכת חלקיקי האפ”ר עם המצב הקוונטי המקורי של חלקיק 1 של אליס, שאותו רוצים לשגר.

2) כדי לצמד את המצב הקוונטי של חלקיק 1 שאותו רוצים לשגר בטלפורטציה לחצי המצב הקוונטי השזור (המצב הקוונטי של חלקיק 2 אשר ברשותה של אליס, האנסילה), אליס מבצעת מדידת מצב בל בשני החלקיקים האלה. תהליך מדידה זה מסתיים בכך שהיא הורסת את המצב הקוונטי המקורי הבלתי ידוע לה של חלקיק 1 ומתוך ארבעה מצבי בל משולבים שזורים אפשריים היא מקבלת מצב קוונטי משולב אחר של חלקיקים 1 ו-2. כל ארבעת תוצאות המדידה האפשריות הן בעלות אותה סבירות.

3) הערוץ הקלאסי: כזכור המצב הקוונטי של חלקיק 2 של אליס הוא בשזירה קוונטית עם המצב הקוונטי של חלקיק 3 של בוב. כאשר אליס מבצעת מדידה בחלקיק 1 ובחלקיק 2 שלה, חלקיק 3 של בוב מושפע מהמדידה של אליס. כאשר החלקיקים 1 ו-2 של אליס הם באחד ממצבי בל, אז חלקיק 3 מיד גם הוא מסתדר באחד מארבעה מצבים. ישנם ארבע מצבים קוונטיים אפשריים שבהם יכול להיות חלקיק 3 של בוב והם שילוב של המצב הקוונטי הכולל של חלקיקים 1, 2 ו-3 לפני ביצוע המדידה על ידי אליס ושל תוצאת המדידה שבוצעה על ידי אליס על חלקיקים 1 ו-2. כל אחד מארבעה מצבים קוונטיים אלה עבור חלקיק 3 של בוב מכיל את המצב הקוונטי המקורי של חלקיק 1 שאותו אליס מעבירה בטלפורטציה. באפשרות הראשונה בוב לא צריך לבצע כל פעולה כדי לקבל עותק של המצב הקוונטי של חלקיק 1 שאותו שלחה לו אליס. בשלוש האחרות ישנה פעולה כלשהי שבוב יצטרך לבצעה כדי להמיר את חלקיק 3 שלו לעותק של המצב הקוונטי המקורי של חלקיק 1.

4) כדי להשלים את מהלך הטלפורטציה אליס צריכה לשדר לבוב בערוץ קלאסי את תוצאות המדידה שלה כדי שבוב ידע באיזו מארבעת האפשרויות החלקיק שלו נמצא והוא יוכל ליישם את הפעולה המתאימה כדי לקבל עותק של המצב הקוונטי המקורי של חלקיק 1 של אליס. בוב יכול ליישם את הפעולה הנכונה רק במידה והוא מקבל את תוצאת מדידת מצב בל שבוצעה על ידי אליס. מידע זה הוא הכרחי להשלמת מהלך הטלפורטציה והוא מועבר באמצעות ערוץ תקשורת קלאסי. לכן המהירות המקסימאלית לטלפורטציה קוונטית היא מהירות האור. אפשר להסביר זאת אינטואיטיבית כך: נגיד שאליס נמצאת על כדור הארץ ובוב נמצא על גלקסיה אחרת. כאשר אליס בצעה את המדידה בחלקיקים 1 -2 וקבלה תוצאה x מיד גם חלקיק 3 של בוב הסתדר בהתאם לתוצאה כלשהי בגלקסיה האחרת בגלל שחלקיקים 2 ו-3 שזורים. אבל גם חלקיק 1 הוא בתמונה ולבוב אין כל דרך לדעת מהי התוצאה x של אליס. הדרך היחידה שבה בוב יכול לדעת זאת היא שאליס תשגר לו את התוצאה בערוץ תקשורת קלאסי.

בעוד שלאחר השלמת הטלפורטציה בוב נותר עם העתק מדויק של המצב הקוונטי המקורי של חלקיק 1, אליס נותרה עם חלקיקים 1 ו-2 עם מצבים קוונטיים שהם ללא זכר למצב המקורי של חלקיק 1. ולכן המצב הקוונטי של חלקיק 3 הוא לא שכפול של זה של חלקיק 1, אלא ניתן לראות בו חלקיק 1 שעבר טלפורטציה.

עכשיו נחשוב על מהלך הטלפורטציה במונחים של ביטים קוונטיים (קיוביטים). אליס (משדר) ובוב (מקלט) חולקים ביניהם שני חצאים של מצב קוונטי שזור מסוים (מצב אפ”ר) של שני קיוביטים. אליס רוצה להעביר מצב קיוביט שברשותה לבוב. היא מכינה מצב קוונטי בודד של קיוביט. מצב הקיוביט הזה שברשות אליס הוא לא חשוב. אליס מודדת (פעולה בלתי הפיכה שהורסת מידע קוונטי ומחליפה אותו במידע קלאסי) את הקיוביט שברשותה ואת חצי הקיוביט השזור (הקיוביט השני) והיא תשדר בערוץ קלאסי לבוב שני ביטים קלאסיים לגבי תוצאת המדידה הזו. מדידה זו מותירה את הקיוביט השלישי, שהוא בידי בוב, במצב שהוא מורכב מהקיוביט של אליס וגם מפעולה כלשהי. ישנן שתי אפשרויות לפעולה הזו: או שאין פעולה אם שני הביטים הקלאסיים של אליס הם 00. או שיש שלוש אפשרויות לפעולה אם הם לא 00. כדי להשלים את מהלך הטלפורטציה אליס משדרת לבוב בערוץ קלאסי (העברת מצב ממקום אחד לשני) את שני הביטים הקלאסיים. בוב משתמש בהם כדי לבצע פעולת שחזור וכך הוא יודע איזו אפשרות לבחור והוא משחזר ביציאה שלו עותק ממצב הקיוביט שאותו שלחה אליס בכניסה.

למה נחוץ המידע הקלאסי? נגיד שבוב חסר סבלנות ולא רוצה לחכות למדידה של אליס. הוא מחליט לנחש את המדידה הקלאסית של אליס בטרם היא מגיעה. בוב משחזר את המצב הקוונטי המקורי הלא ידוע של חלקיק 1 כערבוב אקראי של ארבעת המצבים שבהם מסתדר חלקיק 3 שלו. מתקבל מצב קוונטי מורכב שלא נותן כל מידע אודות המצב הקוונטי הטהור הבלתי ידוע של חלקיק 1 של אליס. זה חייב להיות ככה, בגלל שניתן להשתמש בקורלציה או בשזירה הקוונטית בין המצבים הקוונטיים של החלקיק 2 בכניסה לחלקיק 3 שאותו מנחשים ביציאה, כדי לשלוח סיגנלים מהירים מהאור. רק לאחר שאליס מבצעת את המדידה מהלך הטלפורטציה מושלם והמסר מאליס לבוב מועבר.

במהלך הטלפורטציה חלקיקי האפ”ר 2 ו-3 בהתחלה היו באינטראקציה ואחר כך הם נפרדו ונוצר מצב בשזירה קוונטית: חלקיק 2 הגיע ליעדו הסופי אצל אליס וחלקיק 3 ליעדו הסופי אצל בוב. פירושו של דבר שניתן לבצע טלפורטציה לעצמים רק בין אליס ובוב או בין יעדים אחרים בהם החלקיקים נמצאים ולא ליעדים בלתי ידועים שלא ביקרנו בהם. מידע חשוב מאוד למטיילים במסע בין כוכבים.

חוקרים החלו לחשוב על הכללת הטלפורטציה הקוונטית; על פעולות בקיוביטים, במדידות בל ובמצבים קוונטיים שזורים – כאשר כולם הם בהישג ידה של הטכנולוגיה העכשווית – כדי לבנות מודל תיאורטי אוניברסאלי למחשב קוונטי. מהלך הטלפורטציה הסטנדרטי מוביל ליעילות מוגבלת של מודל כזה למחשב קוונטי (25%). לכן צריך לשפר את היעילות הזו ל-100%, כלומר שהאמינות של הקיוביט המועבר תהיה 1. בגלל הצורך בתיקוני טעויות קוונטיות קשה מאוד ככה לפתח רכיבים קוונטיים יעילים. ב-2008 שני חוקרים, טוהיה הירושימה וסאטושי אישיזקה הציעו מהלך בשם “טלפורטציה מבוססת פורטים” (PBT). המטרה של PBT היא, שהפעולות שאותן בוב מבצע בעקבות המידע הקלאסי שהוא מקבל מאליס יהיו פשוטות יותר.

Picture1

תמונה של צ’רלס בנט.

פרוטוקול ה-PBT דורש גם הוא שזירה קוונטית משותפת לאליס ובוב. שני החוקרים נסחו מהלך PBT דטרמיניסטי והסתברותי. נתמקד במהלך הדטרמיניסטי. במהלך הדטרמיניסטי ישנם הצעדים הבאים:

1) אליס ובוב שניהם חולקים 2N מצבים קוונטיים שזורים של קיוביטים: לבוב יש מחצית מהקיוביטים, כלומר יש לו N קיוביטים B שמתאימים לפורטים של יציאות ולאליס יש גם מחצית מהקיוביטים, יש לה N קיוביטים A שמתאימים לפורטים של כניסות.

2) אליס רוצה לשגר לבוב מצב קוונטי לא ידוע של קיוביט C. אליס מבצעת מדידה משותפת ל-A ול-C כאשר יתכנו N תוצאות אפשריות למדידה על הקיוביטים A ו-C שלה. נגיד שאליס מקבלת תוצאת מדידה אחת כלשהי מתוך כל ה-N תוצאות האפשריות האלה, תוצאת מדידה i.

3) אליס מספרת לבוב את התוצאה i באמצעות ערוץ קלאסי. בוב מקבל את המצב שעבר טלפורטציה על ידי זה שהוא בוחר באחד מ-N הפורטים ביציאה שלו שתואם לתוצאת המדידה של אליס ומשמיד את כל שאר הפורטים (הקיוביטים) האחרים: כלומר שבוב משמיד את כל השזירה מלבד בפורט אחד. בוב תמיד מסיק שבפורט הנבחר ישנו המצב המשוגר בטלפורטציה, ולכן הוא לא צריך ליישם כל פעולה (באמצעות המדידה של אליס) כדי לחלץ העתק של המצב הקוונטי המקורי של הקיוביט C של אליס.

מהלך זה לכן מספק מעבד קוונטי דטרמיניסטי ואמין בהסתברות 1. זאת בתנאי שיש לנו אינסוף פורטים, כלומר כאשר N שואף לאינסוף. אם N הוא סופי אז מהלך טלפורטציה זה הוא מקורב.

אבל ב-1997 שני חוקרים (נילסן וצ’אנג) הוכיחו משפט no-go (סוג משפטים בפיסיקה שקובע שמצב כלשהו בתורת הקוונטים או פרוטוקול כלשהו לא יכול להתקיים: למשל תורות משתנים חבויים שמנסות להסביר את ההסתברות של תורת הקוונטים): לא יכול להתקיים מעבד קוונטי אוניברסאלי שניתן לתכנתו והוא דטרמיניסטי; ואם נספק לו הוראות דטרמיניסטיות אז בלתי נמנע שהתוצאה עצמה תכיל רעש. כלומר, מעבד קוונטי שניתן לתכנות יכול להתקיים רק אם הוא יפעל בצורה הסתברותית.

בדצמבר 2012 סרגי סטרלצ’ק מהמחלקה למתמטיקה יישומית ופיסיקה תיאורטית באוניברסיטת קיימבריג’, שהוביל מחקר יחד עם ג’ונתן אופנהיים מקיימבריג’ ומאוניברסיטת קולג’ בלונדון ומייקל הורודקי מאוניברסיטת גדנסק, הראו שישנן בעיות בפרוטוקול PBT: הפרוטוקול דורש כמות אדירה של שזירה אצל אליס כדי לשגר לבוב מצב קוונטי בודד.

מבחינה זו אם רוצים לממש בצורה פראקטית את טלפורטצית ה-PBT יהיה מאוד קשה לעשות זאת. לכן יש להקטין את כמות השזירה אצל אליס ולבצע טלפורטציה לרצף של מצבים קוונטיים. ככה נקבל תוכנית יותר יעילה ומחשוב קוונטי לא-לוקאלי יעיל.

ישנה עוד בעיה: מכיוון שבוב מוחק את מרבית השזירה ובדרך השזירה מתדלדלת או מתעוותת, נכנסים טעויות בשזירה והטעות גדלה ככל שמשגרים יותר מצבים קוונטיים, לא ניתן לשגר מצבים קוונטיים אחד אחרי השני.

הרעיון של החוקרים מאנגליה ומגדנסק הוא להציג מהלך של מחזור להפחתת כמות השזירה בטלפורטציה מסוג PBT ולשיגור של כמות גדולה של מצבים קוונטיים בזה אחר זה או סימולטאנית. החוקרים משלבים בין שני סוגי פרוטוקולי טלפורטציה: 1) אליס ובוב משתמשים במצבור סופי של מצבים. אליס כך מבצעת את שיגור הטלפורטציה של המצב, כאשר בוב צריך לבצע תיקון (פעולה) כדי לקבל את המצב הקוונטי המשוגר.  2) אליס ובוב משתמשים במצבור אינסופי של מצבים ואליס משגרת את המצב הקוונטי, כאשר בוב לא זקוק לתיקון בצד שלו.

כדי להפחית את כמות השזירה החוקרים מציעים שני פרוטוקולים שממחזרים את השזירה בחצי המצב הקוונטי השזור אצל אליס שמורכב מ-N פורטים: בפרוטוקול הראשון אליס משגרת בטלפורטציה בזה אחר זה מצבי קיוביטים באמצעות מצב קוונטי שזור משותף לה ולבוב. אליס כך מיישמת הרבה פעמים את מהלך טלפורטצית ה-PBT. אבל במקום להפטר מהמצב השזור בסוף התהליך, אליס ובוב שומרים עליו ואליס ממחזרת את המצב השזור לשימוש חוזר. בפרוטוקול השני אליס מבצעת טלפורטציה למצבים שלה בבת אחת – לא אחד אחרי השני –  ולכן היא משייכת באקראי את כל אחד מהמצבים הקוונטיים לאחד מהפורטים. גם כאן חצי המצב השזור מתדלדל ביחס ישר למספר המצבים שאליס שולחת, כאשר יש גבול למספר הקיוביטים שהיא יכולה לשלוח ועליה למחזר את המצב הקוונטי השזור.

פילוסופיה של הפיזיקה – בעית המדידה ופירושים למכניקת הקוונטים

המכניקה הקלאסית היא דטרמיניסטית. ניתן לגמרי לנבא את ההתפתחות בזמן של המערכת כאשר קבענו את הפתרון למשוואת התנועה. בנוסף, בעקרון ניתן לצפות במערכת קלאסית מבלי להפריע למצבה. ההתפתחות הזמנית של המערכות הקוונטיות נתונה על ידי משוואת שרדינגר. המצב הקוונטי (וקטור המצב) של המערכת הקוונטית גם הוא מתפתח בצורה דטרמיניסטית בהתאם למשוואת שרדינגר הדטרמיניסטית והליניארית. בדיוק כמו בפיסיקה הקלאסית, בהינתן המצב ההתחלתי של המערכת וההמילטוניאן, ניתן בעקרון לחשב את המצב בזמן שרירותי. אבל משוואת שרדינגר מציבה קושי כאשר רוצים לספק לה פירושים: בהינתן תנאי התחלתי כלשהו המערכת שמתוארת על ידי המצב הקוונטי מתפתחת למצב שמכיל סופרפוזיציה של מצבים. מבחינה מתמטית עקרון הסופרפוזיציה במכניקת הקוונטים יסודו בליניאריות של מרחב הילברט. אם נתונים שני מצבים קוונטיים, לפי מכניקת הקוונטים כל קומבינציה ליניארית שלהם מתאימה למצב קוונטי אפשרי. היה צורך להסביר כיצד במדידה מתקבלת תוצאת אחת מתוך ריבוי תוצאות אפשריות.

הפירוש הראשון שהסביר זאת היה פשר קופנהגן שגובש ב-1928 על ידי נילס בוהר. בוהר טען שהמכשיר הקלאסי הכרחי לביצוע המדידות כדי שהתופעות המכניות קוונטיות תהיינה נגישות לצופה (המקרוסקופי) במונחים של העולם הקלאסי מהניסיון שלו. מכשיר המדידה נשלט על ידי חוקים פיסיקאליים קלאסיים ואינו מתואר במונחים מכניים קוונטיים. מכשיר המדידה מראה ערך מוגדר אחד בגלל שהוא שייך לעולם המקרוסקופי הקלאסי (שם אין סופרפוזיציה). תורת הקוונטים היא לא אוניברסאלית. יש להבחין בין העולם הקוונטי לקלאסי וישנו גבול שחוצץ בין השניים. לא ניתן להזיזו מבלי להרוס את האינטראקציה בין מכשיר המדידה למערכת הקוונטית ואת התופעה הנצפית. בעקרון ניתן למדוד את החושים שלנו, העיניים ומערכת העצבים ולהתייחס אליהם כאל עצם קוונטי, בתנאי שנמצא מכשיר קלאסי מתאים שיבצע את המשימה. מכאן שאין לנסות לקבל את הפיסיקה הקלאסית כנובעת ממבנה קוונטי. תורת הקוונטים היא תיאוריה שלמה והפיסיקה הקלאסית היא פיסיקה שקדמה למכניקת הקוונטים. פשר קופנהגן הוא אינו הפירוש הסטנדרטי (האורתודוקסי) למכניקת הקוונטים.

ב-1932 ג’ון פון נוימן כתב את ספרו היסודות המתמטיים של מכניקת הקוונטים. בספר הוא נתן פירוש למדידה הקוונטית. לעומת פשר קופנהגן, פון נוימן טען שכאשר מערכת קוונטית היא באינטראקציה עם מכשיר מדידה, אינטראקציה זו עצמה נתונה לחוקי מכניקת הקוונטים והיא מתוארת על ידם. מתארים מכשיר מדידה כמערכת קוונטית מכנית. אנחנו נמצאים באינטראקציה עם מכשיר המדידה ומפרשים את תוצאות המדידה במונחים של הערכים העצמיים של המערכת הקוונטית. כל מדידה גורמת לקפיצה לא רציפה בהתפתחות הזמנית האחידה של מצב המערכת הקוונטית; פעולת התצפית במערכת קוונטית באופן בלתי נמנע מפריעה למערכת וגורמת לבחירת אחד מהערכים העצמיים. הדבר נגרם באמצעות קריסת פונקצית הגל לאחד מהמצבים שנקבע על ידי הערכים העצמיים של אופרטור המדידה. מושג קריסת פונקצית הגל של פון נוימן הוא הכרחי כדי להסביר כיצד מערכת קוונטית שהייתה לפני אקט המדידה במצב של סופרפוזיציה היא עתה מומרת למערכת קוונטית שקיימת במצב אחד ויחיד לאחר שתהליך המדידה התרחש. קריסת פונקצית הגל מייצגת שינוי בידע שלנו אודות המערכת, חידוד של הידע שלנו אודות מצב החלקיק הקוונטי; ויותר מזה, לפני המדידה החלקיק הוא במצב בלתי מוגדר – אין לנו ידע מדויק אודות החלקיק עד אשר אנו מודדים אותו, והמדידה עצמה (כלומר מכשיר המדידה עצמו) מכריעה (מכריע) מהו המצב שאותו נוטל החלקיק.

עבור מערכות מיקרוסקופיות מצבי סופרפוזיציה אושרו ניסויית. אבל אנחנו אף פעם לא רואים מצבים כאלה בעולמנו. לפי הפירוש של פון נוימן, סופרפוזיציות מקרוסקופיות אינן במפורש אסורות, אבל אנחנו אף פעם לא צופים בהן בגלל שכל תצפית כזו דורשת אינטראקציה שהיא דמוית מדידה ואז מיד מתרחשת קריסה. הקושי שלנו עם מכניקת הקוונטים הוא הסתירה בין עקרון הסופרפוזיציה, שהוא הדוקטרינה העיקרית במכניקת הקוונטים, והמציאות הקלאסית היומיומית שלנו שבה דומה שהעיקרון מופר.

בשנות ה-1970-80 פותחה תיאוריה חדשה, הדה-קוהרנטיות. שאלו: האם העולם המקרוסקופי הוא קלאסי? מדוע שלא יהיה גם כן קוונטי? אין להתעלם מהעובדה שמכניקת הקוונטים תקפה גם עבור העולם המקרוסקופי ולכן עלינו להבין במסגרת מכניקת הקוונטים מדוע העולם המקרוסקופי מופיע כקלאסי. המטרה של תיאורית הדה-קוהרנטיות היא להסביר את הופעת התופעות הקלאסיות כנובעות מתוך העולם הקוונטי; הסבר זה נעשה על ידי לקיחה בחשבון של התפקיד שיש לסביבה במערכת הקוונטית. לכן חוקרים מערכות קוונטיות פתוחות שלוקחות בחשבון את האפקט הבלתי נמנע של הסביבה.

הדה-קוהרנטיות נובעת מיישום של הפורמליזם הקוונטי לתיאור האינטראקציה של המערכת הפיסיקאלית עם סביבתה. היא אינה פירוש שנועד לפתור את בעיית המדידה. כדי לפתור את בעיית המדידה מוסיפים לפירושים השונים הסבר לפי תיאורית הדה-קוהרנטיות.

כמעט כל מערכת פיסיקאלית צריכה להיות באינטראקציה בדרך כלשהי עם סביבתה, למשל עם הפוטונים מסביב שיוצרים את הניסיון החושי אצל הצופה. בעולם הקוונטי אנחנו רואים שזירה קוונטית בכל מקום. לפי תיאורית הדה-קוהרנטיות, נוצר צימוד כזה בין המערכת לסביבתה, מצב לא לוקאלי בשזירה קוונטית של מערכת-סביבה. בהתאם לשזירה הקוונטית כבר לא ניתן לשייך מצב קוונטי נפרד למערכת הקוונטית כי היא נמצאת בקורלציה עם סביבתה.

נבחן בתחילה מערכת קוונטית טהורה קוהרנטית (מערכת בסופרפוזיציה של מצבים – פונקצית הגל של מצב אחד ופונקצית הגל של המצב השני רוטטות כמעט בצורה מסונכרנת) ומכשיר מדידה. בשלב הראשון המערכת היא באינטראקציה עם מכשיר המדידה וישנה שזירה ביניהם. אבל דרוש הסבר לכך שמתקבלת תוצאה מוגדרת אחת בסיום הניסוי (בעיית המדידה). כאשר המערכת הקוונטית מיוצגת על ידי סופרפוזיציה של מצבים שאותם מכשיר המדידה אמור למדוד, נקבל מצב סופי מורכב: מערכת-מכשיר מדידה בסופרפוזיציה של המצבים של המערכת הקוונטית ושל מכשיר המדידה. לא ניתן ככה לשייך ערך מוגדר ויחיד למכשיר המדידה. להפך, שייכנו ריבוי של תוצאות אפשריות. אולם מכשירי מדידה במהרה נשזרים למספר עצום של דרגות חופש בסביבה, לפוטונים שאין אנו יודעים את מצבם במדויק, והצופה לא יכול למדוד את כל דרגות החופש האלה. בנוסף הסביבה נמצאת בשזירה עם המערכת הקוונטית הנמדדת. כל מערכת קוונטית ממשית היא תמיד באינטראקציה עם הסביבה. מתקבלת שזירה לא לוקאלית בין המערכת הקוונטית-מכשיר המדידה-והסביבה: המערכת המשולבת הזו מתוארת על ידי סופרפוזיציה של מצב מורכב. במצב של הסופרפוזיציה הקוהרנטית (המערכת הקוונטית הטהורה) ישנו מידע רב. כאשר מדובר במערכת קוונטית מיקרוסקופית השזירה עם הסביבה מצמצמת את המידע האפשרי שיש לצופה על המערכת הקוונטית כדי שתוצאת המדידה תהיה קלאסית. כלומר, המערכת הקוונטית בסופרפוזיציה, שהיא שזורה לסביבה, דועכת מאיליה עם הזמן לתוצאת מדידה קלאסית. אבל הליך דה-קוהרנטי זה אינו מסביר מדוע מתקבלת תוצאה אחת ויחידה מוגדרת בסוף הניסוי. הסופרפוזיציה מייצגת מצבים קוונטיים ש”קיימים” בו-זמנית ולכן הסבר זה לא מאפשר לנו לבודד מצב יחיד של מכשיר מדידה שיצביע על תוצאת מדידה מעשית של הניסוי. דומה שזקוקים לצופה ולקריסת פונקצית הגל כדי להסביר זאת. ראו כאן וכאן וכאן

ב-1935 ארווין שרדינגר הציע פרדוקס חתול מקרוסקופי בסופרפוזיציה. למעשה בעקבות ניסוי האפ”ר של איינשטיין, איינשטיין ושרדינגר התכתבו ב-1935. איינשטיין סירב לקבל את מכניקת הקוונטים כתיאוריה שלמה ושרדינגר הציע את אחד מניסויי המחשבה המפורסמים ביותר שפותחו אי פעם – פרדוקס החתול של שרדינגר – כדי לשכנע את איינשטיין העקשן שהעולם הקוונטי הוא אכן מסתורי ומוזר

einstein-bohr

פרדוקס החתול של שרדינגר: “מישהו יכול אפילו לתכנן מקרים מגוחכים למדי. חתול נכלא בתוך כלוב מפלדה, יחד עם הרכיב השטני הבא (שחייבים להגן עליו מחשש להפרעה ישירה מהחתול): במונה גייגר ישנה מעט חתיכת חומר רדיואקטיבי, כה קטנה, שאולי עם חלוף שעה אחת, אחד מהאטומים דועך, אבל גם, באותה הסתברות, אולי אף אחד [לא דועך]. אם זה קורה, שפופרת המונה מתפקרת ובאמצעות תמסורת משחררת פטיש שמנפץ בקבוקון קטן של חומצה הידרוציאנית. אם משאירים את המערכת הזו כולה לבדה למשך שעה, נוכל לומר שהחתול עדין חי אם בינתיים שום אטום לא דעך. דעיכת האטום הראשונה תרעילו. פונקצית הגל של המערכת כולה תבטא זאת על ידי זה שתכלול בתוכה את החתול החי והמת (סליחה על הביטוי) מעורבב או מרוח כולו בחלקים שווים”. ג

182802_10150870716712231_1614171031_n

החתול של שרדינגר: ברמת פונקצית הגל, מתי ה-and הקוונטי הופך ל-or קלאסי?

הפרדוקס מופיע כאשר מנסים לתאר את המצב של המערכת המקרוסקופית בטרם מודדים אותה וכאשר לא צופים בה. נגיד שאנחנו מבטאים שני מצבים קוונטיים של האטום:

1) האטום דועך ופולט אלקטרון 2) האטום נותר במצב של חוסר דעיכה;

ושני מצבים קוונטיים של החתול: 1) החתול מת 2) החתול חי.

שני מצבי המערכת הכוללת שמשלבים את המצבים של האטום הרדיואקטיבי עם המצבים של החתול הם: מצב של אטום שדעך כפול מצב של חתול מת ומצב של אטום שלא דעך כפול מצב של חתול חי. לפי עקרון הסופרפוזיציה הקוונטי המצב הבלתי נצפה של קופסת החתול בטרם היא נפתחת ונמדדת הוא מצב חתול שרדינגר, או בקיצור מצב חתול. זהו המצב הבלתי נצפה של המערכת – המצב של המערכת בטרם הקופסא נפתחה לאחר שעה. למצבי חתול שרדינגר אין כל ממשות. לפי הפירוש הסטנדרטי למכניקת הקוונטים אין מדובר כאן בחתול אמיתי במצב מרוח או תלוי בין חיים למוות ולכן החתול הוא לא חי ולא מת; הדעיכה הרדיואקטיבית היא לא-לא התרחשה וגם לא התרחשה. כלומר, שום דבר הוא לא ממשי עד אשר צופים בו. ולכן הסופרפוזיציה שעליה מדבר שרדינגר (“החתול החי והמת… מעורבב או מרוח כולו בחלקים שווים”) למעשה לא אומרת דבר על מצבו של החתול עצמו, אלא על מצב הידיעה של הצופה, שאינו יודע מהו מצב החתול בטרם ביצע את המדידה. כאשר צופים במערכת והחתול נמצא מת, או אז נגלה גם שהאטום הרדיואקטיבי דעך. לחילופין, אם נגלה שהחתול חי, נגלה גם שהאטום הרדיואקטיבי נותר שלם ולא דעך

לפי הפירוש הדה-קוהרנטי כל מערכת קוונטית ממשית כמו חתול בקופסא מצויה במגע עם סביבתה החיצונית (פוטונים, אטומים וכולי). שזירה זו בין המערכת הקוונטית של החתול בסופרפוזיציה והסביבה שבה היא נמצאת מובילה את החתול בסופרפוזיציה לדעיכה מהירה מאוד למצב של חי או מת. מכיוון שהחתול הוא מערכת מקרוסקופית שמורכבת ממיליארדי אטומים שבאים במגע עם מיליארדי חלקיקים בסביבה, הדה קוהרנטיות מתרחשת כמעט מיד ולכן החתול לא יכול להיות במצב של סופרפוזיציה – גם חי וגם מת – אפילו למשך רגע אחד. הפיזיקאי-פילוסוף דייויד מרמין מספר, שאינשטיין הלך לטייל בפרינסטון עם חברו אברהם פייס והם שוחחו על מושג המציאות האובייקטיבית. לפתע אינשטיין נעצר ושאל את פייס: האם אתה באמת מאמין שהירח קיים רק כאשר אתה מביט בו? לפי הדה-קוהרנטיות לא זקוקים לצופה שיביט בחתול, הסופרפוזיציה דועכת מאליה…  ג

פרדוקס החתול של שרדינגר וקריסת פונקצית הגל הובילו לויכוח בנושא הקריסה. האם רעיון הקריסה הוא הכרחי להסבר מדוע לפני הליך המדידה המערכת הקוונטית נמצאת במצב חתול שרדינגר מוזר של סופרפוזיציה, ואילו אחרי שבוחרים בפרוצדורת מדידה מסוימת, המערכת קיימת רק במצב אחד ויחיד?

ב-1957 יו אברט, בעידודו של ג’ון ארצ’יבלד וילר, פיתח את תיאורית המצבים היחסיים. אברט הציע:

“להניח שהתיאור הקוונטי תקף בצורה אוניברסאלית על ידי ביטול […קריסת פונקצית הגל]. מניחים את התקיפות הכללית של מכניקת הגלים הטהורה עבור כל המערכות הקוונטיות כולל צופים ומכשירי מדידה, ללא קביעות סטטיסטיות. תהליכי המדידה מתוארים לגמרי על ידי פונקצית המצב של המערכת המורכבת שכוללת את הצופה ומערכת המושא שלו, שבהם שולטת משוואת הגלים בכל הזמנים”.

בעוד שפשר קופנהגן קובע גבול ברור בין האזור הקוונטי לקלאסי, כאשר הוא מאפשר מעבר לאזור הקלאסי רק של תוצאת מדידה אחת על ידי האינטראקציה בין מכשיר המדידה הקלאסי למערכת הקוונטית, הפירוש של אברט לגמרי משמיט את הגבול הזה. אברט קובע שכל האיברים בסופרפוזיציה של המצב הכולל למעשה מתאימים למצבים פיסיקאליים עם תום המדידה. בפירוש הסטנדרטי למכניקת הקוונטים יש סופרפוזיציה של שני מצבים ואז קריסה למצב אחד. אברט ביטל את הקריסה ולכן כל פעם כאשר יש מדידה נוספים מצבים יחסיים, או איברים בסופרפוזיציה.

אברט מסביר: “כל התהליכים נבחנים באותה מידה (אין ‘תהליך מדידה’ שמשחק תפקיד מועדף)…”. ולכן הוא מציע “תיאור קונסיסטנטי של היקום שבו כמה צופים הם בפעולה”. אברט מסביר את הצורך בריבוי צופים: “הבה נבחן את הצופה כתת-מערכת של המערכת המורכבת: צופה+מערכת מושא. המסקנה הבלתי נמנעת היא, לאחר שהאינטראקציה התרחשה, כבר לא יהיה קיים באופן כללי מצב של צופה יחיד. אמנם המערכת תהיה בסופרפוזיציה של מצבים מורכבים, כאשר כל איבר מייצג מצב צופה מוגדר ומצב מערכת-מושא יחסי מוגדר. בנוסף, כפי שנראה, כל אחד ממצבי מערכת המושא היחסיים האלה ייצג בקירוב את הערכים העצמיים של התצפית שמתאימים לערך שנתקבל על ידי הצופה ומתואר על ידי אותו איבר בסופרפוזיציה. לכן, כל איבר בסופרפוזיציה המתקבלת מתאר צופה שמרגיש תוצאה מוגדרת ובאופן כללי שונה, והוא סבור שמצב מערכת-המושא עבר טרנספורמציה למצב העצמי המתאים. במובן זה דומה שהקביעות הרגילות של […קריסת פונקצית הגל] הן תקיפות מבחינה סובייקטיבית עבור כל צופה שמתואר על ידי איבר בסופרפוזיציה”.

אם מבטלים את קריסת פונקצית הגל ומשאירים את הצופה היחיד, מגיעים למסקנה שיש לנו צופה שמסוגל לבצע מספר אינסופי של ניסויים ולצפות בתוצאה של כולם. זה בלתי אפשרי, כי אף אחד לא מסוגל לבצע אינסוף ניסויים. בנוסף תורת היחסות הפרטית מציבה גבול על היכולת הפראקטית של אותו צופה יחיד בגלל שחלק מהניסויים יצטרכו להתבצע מחוץ לקונוס האור של הצופה, ופירושו, שהוא לא יוכל בכלל לבצעם. לכן מגיעים למסקנה שדרושים ריבוי של צופים בעולמות נפרדים, כאשר בכל עולם צופה עוקב אחר רצף אירועים סיבתי.

בהתחלה לא התייחסו לפירוש של אברט עד אשר ב-1970 ברייס דה ויט ויחד עם ניל גראהם ב-1973 הביאו את הרעיון לידיעת הציבור. דה ויט הסביר את התיאוריה של אברט על ידי פירוש העולמות המרובים לפיו כל איבר בסופרפוזיציה מייצג מצב פיסיקאלי אמיתי שממומש בענף של מציאות אחרת. וכל מצב פיסיקאלי כזה הוא יחסי לענף של עולמות מקרוסקופיים שמתפצלים. ג’ון וילר אמר שהחלקיק “באמת יהיה בשני מקומות שונים בו זמנית”, כלומר בשני עולמות שונים בו-זמנית… לכן המצב הכולל מייצג עולמות מרובים, כאשר כל אחד מהם מוגדר מבחינה מקרוסקופית. אולם מתי בדיוק מתרחשת ההתפצלות? ההתפצלות מתרחשת כל הזמן ובכל מקום. אם המדידה יוצרת צימוד בין מכשיר המדידה למערכת הקוונטית, כל פעם כאשר צימוד כזה מתרחש קורית התפצלות; ואם מניחים שההתפצלות היא לעולם ממשי, המשמעות של זה היא בעייתית מאוד. פירוש כזה קובע קבוצה אינסופית של ענפים נפרדים שהם תואמים לאירועים נפרדים של הניסיון שלנו.

מכאן שאין הסתברויות בפירוש העולמות המרובים, מכיוון שכל תוצאה למעשה מתרחשת בעולם כלשהו. דומה שזה סותר את הפירוש הסטנדרטי למכניקת הקוונטים, שמאפשר מימוש תוצאה אחת בלבד, מכיוון שכל תוצאה אפשרית מאוכלסת על ידי ענף של פונקצית הגל של היקום שהולך ומתרבה.

מבחינת הקשיים, הפירוש הסטנדרטי ופירוש העולמות המרובים נתקלים באותו הקושי: למה אני הצופה רואה רק אפשרות אחת מבין אינסוף האפשרויות? מתי, איפה, איך (ומי?) מחליטים איזו אפשרות יקבל איזה צופה מבין אינסוף הצופים בביפורקציה בעולמות המרובים? בפירוש העולמות המרובים לא ניתן להגדיר אילו מצבים של היקום מתאימים לענפים השונים. בגרסה המקורית של פירוש העולמות המרובים, הצופה בעולם שלו הוא בדיוק כמו הצופה בפירוש הסטנדרטי למכניקת הקוונטים – מימש תוצאת מדידה אחת.

נבחן גרסת אברט לפרדוקס החתול של שרדינגר שמדגים זאת. לפי פירוש העולמות המרובים, שתי האפשרויות של חתול חי וחתול מת מובילות לשתי קבוצות הסתעפויות שונות: בקבוצת הסתעפות אחת החתול מת ובקבוצת ההסתעפות השנייה החתול חי. נגיד שבעולמנו הצופה פתח את הקופסא ומצא שהחתול מת. לפי פירוש העולמות המרובים בעולם אחר החתול חי. לכן אם החתול מת בעולם הזה, הוא קם לתחייה בעולם מקביל אחר. אולם, מבחינת הצופה בעולמנו החתול מת. ולכן ניתן לטעון, שאברט לא חידש דבר: אין הבדל בין קריסת פונקצית הגל לבין פירוש העולמות המרובים; נשאלת לכן השאלה: האם הצופה יכול להיות עד לפיצול העולמות? והתשובה היא: הצופה לא מודע לפיצול ולהעתקים המרובים שלו, כי הפיצול מתרחש לעבר עתידים מרובים, כך שישנם המוני עותקים שלו בתוך יקומים מנותקים זה מזה. הבעיות האלה ואחרות צצות בגלל שהעולמות המרובים של אברט נחשבים למשהו שהוא אפשרי ובעל ממשות פיזיקאלית. מצב של פיצול כזה, כל פעם כאשר ישנה הכרעה ומדידה, יגרום לפיצוץ אוכלוסין של יקומים, כלומר, מספר היקומים יגדל כל רגע וכל שנייה בצורה מעריכית. כל רגע נולד יקום חדש עם העתק של צופה כלשהו.

ברבות השנים נולדה גרסה חדשה יותר לעולמות המרובים לפיה אין לראות בעולמות המרובים כביפורקציה –  כמו מעין עץ שיוצאים ממנו ענפים כל פעם שישנו אקט מדידה – או מעין מודל פרקטלי. מדובר במספר אינסופי של עולמות מקבילים. לפיכך, לפי פירוש העולמות המקבילים, במקום העולם שמתפצל לענפים נפרדים כתוצאה מהמעבר הקוונטי, המצבים השונים של הסופרפוזיציה מתחלקים בין מספר אינסופי של עולמות מקבילים. מאוחר יותר הוצע פירוש לפיו כל מצב פיסיקאלי מתאים למחשבה אחת מבין הרבה מחשבות של אותו הצופה (פירוש המחשבות המרובות).

בגרסאותיה השונות תורת המצבים היחסיים של אברט מופיעה כעולמות מרובים, מחשבות מרובות, עולמות מתפצלים, עולמות מקבילים, עולם פיסיקאלי אחד שמתפצל לאספקטים שונים, וכולי.

תומכי הדה-קוהרנטיות נטו באופן טבעי לאמץ את פירוש העולמות המרובים בגלל שזה נראה אך טבעי לשייך את הרכיבים הדה קוהרנטיים השונים של פונקצית הגל עם ענפים מתפצלים שונים של אברט; ולהפך הדה קוהרנטיות דומה שגם פתרה בעיות בתורת העולמות המרובים: מחשבות מרובות מובילות צופה למצב של סכיזופרניה. כאשר יש אינטראקציה בין המערכת הקוונטית לצופה ומכשיר המדידה שלו (הוא מבצע מדידה במערכת הקוונטית), המערכת הקוונטית ומכשיר המדידה של הצופה הם שזורים. המצב התודעתי של הצופה נכנס למצב של סופרפוזיציה קוהרנטי של שני מצבי מדידה (שיכולים להתאבך זה עם זה). כל מצב תודעתי מודד מצב אחר של המערכת הקוונטית. מדוע אם כן הצופה אף פעם לא יכול להיות מודע למצב הסופרפוזיציה הסכיזופרני של מחשבתו? מדוע מבחינתו הוא למעשה מודע למדידת תוצאה אחת? ההסבר הוא שיש דיכוי מהיר של ההתאבכות בין מצבי התודעה השונים של הצופה על ידי תהליך הדה-קוהרנטיות בין המצבים התודעתיים של הצופה. זה מונע ממצבי הזיכרון השונים מלהתאבך וככה כל מצב זיכרון נפרד מייצג זהות נפרדת של הצופה.

למעשה אין הבדל בין קריסת פונקצית הגל לפירוש העולמות המרובים בגלל שהעולמות מנותקים זה מזה. אולי חורי תולעת יכולים לסייע לצופים לתקשר ביניהם? לפני שנה לאונרד זוסקינד מאוניברסיטת סטנפורד בפאלו אלטו ורלף בואסו מברקלי הציעו את הרעיון הבא: ישנם קוסמולוגים שחושבים שהיקום שלנו נברא יחד עם מספר עצום, יתכן שאינסופי, של יקומים אחרים. לכן היקום שלנו הוא רק יקום אחד קטנטן בסדרה של מולטי-יקומים. זוסקינד ובואסו הציעו שהמולטי-יקומים והפירוש של העולמות המרובים למכניקת הקוונטים הם פורמאלית זהים. כלומר העולמות המרובים של מכניקת הקוונטים והעולמות המרובים של המולטי-יקומים הם אותו הדבר בדיוק. גם בפירוש העולמות המרובים וגם בתיאורית המולטי יקומים מביטים על העולם כעל אוסף של יקומים מקבילים.

 ראו כאן.

פילוסופיה של הפיזיקה – מסע בזמן במכניקת הקוונטים

תורת היחסות הכללית מאפשרת מבחינה תיאורטית את הקיום של לולאה סגורה בזמן (CTC). אלה הם מסלולים במרחב זמן – מסלול של חלקיק שנע לעבר ושב לנקודה שממנה הוא יצא –  ולכן זו לולאה סגורה. פיסיקאים מסוימים סבורים שלולאות כאלה קיימות באזורים אקזוטיים שבהם המרחב-זמן הוא כה מעוות ושונה כמו במעמקי החורים השחורים. אפשרות הקיום של לולאות כאלה לראשונה עלתה ב-1949 עם ההצעה של קורט גדל, שגילה פתרון למשוואות השדה של איינשטיין מתורת היחסות הכללית שמאפשר CTC. לולאות כאלה מאפשרות לנוסע שעוקב אחריהם לבוא במגע עם הדמות הקודמת של עצמו. זוהי נסיעה לעבר שמשנה את העבר וגורמת לפרדוקס הסבא המפורסם: אנחנו יכולים לבצע פעולה כלשהי בעבר – בכוונה או לא בכוונה – ובכך לשנות את ההיסטוריה או לגרום לעתיד שלנו לא להתקיים. אבל לולאות סגורות בזמן אלה הן לא המכניזם האפשרי היחיד לשיבה לעבר. מכניקת הקוונטים עשויה לאפשר נסיעה בזמן לעבר גם בהעדר CTC יחסותיות בגיאומטריה של המרחב-זמן.

מכניקת הקוונטים מספקת אפשרויות למסע בזמן גם בהעדר CTC בגיאומטריה של המרחב-זמן. אחת הגרסאות הידועות למסע בזמן תוארה בהרצאת הנובל של פיינמן והיא קרויה הטלפון של ג’ון וילר. פיינמן מספר שהוא קיבל שיחת טלפון בבית הספר ללימודים מתקדמים בפרינסטון מפרופסור וילר, שבה הוא אמר: “פיינמן, אני יודע למה לכל האלקטרונים יש אותו המטען ואותה המסה”. פיינמן שאל מדוע. ווילר ענה: “בגלל שהם כולם אותו האלקטרון!” ואז הוא הסביר בטלפון, “נניח שקווי העולם, שאותם אנו בדרך כלל מחשיבים כבאים לפני בזמן ובחלל – במקום רק לנוע למעלה בזמן, הם מצויים בלולאה עצומה, ואז, כאשר אנחנו חוצים את הלולאה במישור שמתאים לזמן קבוע, אנחנו רואים הרבה, הרבה קווי עולם ואלה מייצגים אלקטרונים, מלבד דבר אחד. אם בקטע אחד זהו קו עולם של אלקטרון רגיל, בקטע שבו הוא חוזר על עצמו והוא שב מהעתיד לעבר יש לנו את הסימן השגוי לזמן העצמי – למהירויות העצמיות – וזה שקול לשינוי הסימן של המטען, ולכן חלק זה של המסלול יפעל כמו פוזיטרון”. ולכן הטלפון של וילר פירושו שאלקטרון הוא פוזיטרון שנע אחורנית בזמן.

time_tunnel_big

דיויד דויטש מאוניברסיטת אוקספורד הציע CTC בתורת הקוונטים כדי לפתור כמה פרדוקסים של מסע בזמן. דויטש חשב על מחשוב קוונטי ולכן על פרדוקס הסבא בהקשר למחשבים קוונטיים. נגיד שלחלקיק קוונטי יש מצבים 0 או 1. הוא נע על גבי CTC ואז הוא באינטראקציה עם חלקיק כלשהו כך שה-0 הופך ל-1 וה-1 הופך ל-0. חלקיק כזה מייצג פרדוקס סבא. לפי דויטש אדם יכול לזכור שהוא הרג את הסבא שלו מבלי בכלל לבצע את הפשיעה הנוראה הזו. זה מונע את השינוי של העבר ואת מחיקת קיומו. הכיצד?

דויטש מציע הצעה זו בהתאם לפירוש העולמות המרובים של יו אברט. אם נתעלם מהפורמליזם הקוונטי ונדבר בשפה רגילה אז בהתאם לפירוש של אברט מדברים על קיום של יקומים שונים שקיימים במקביל. פרנק טיפלר (מאוניברסיטת טולאן בניו אוליאנס) טוען שפירוש העולמות המקבילים משיב את הדטרמיניזם למכניקת הקוונטים. למשל יחסי אי הודאות של הייזנברג לפיהם לא ניתן למדוד בדיוק אינסופי את המיקום של החלקיק ואת התנע שלו בו-זמנית. לפי הפירוש של אברט, העולמות האחרים הם באינטראקציה עם העולם שלנו ולכן אם אנחנו מנסים למדוד את המיקום של החלקיק, האינטראקציה של החלקיק עם המקבילה שלו ביקומים האחרים תגרום לתנע שלו להיות מאוד גדול. לכן אם מוסיפים את הפירוש של העולמות המקבילים האמרה המפורסמת של אלברט איינשטיין מקבלת משנה תוקף: “אלוהים לא משחק בקוביות”

לפי דויטש אנחנו מתמקדים באבולוציה של החלקיק סביב CTC בהתאם לפירוש של אברט כאשר נתון לנו אוסף של ערכים או עולמות. נגיד שנוסע חוזר אחורה בזמן ופוגש את עצמו. לפי דויטש, הוא נמצא ולא נמצא בו זמנית. בגלל שיש צביר של עולמות: במחצית מהעולמות הוא פוגש את עצמו ויכול לשנות את העבר ובשאר העולמות הוא לא פוגש את עצמו. בעולמות שבהם הוא לא פוגש את עצמו הוא שוב חוזר אחורה בזמן ואז במחצית מהעולמות הוא פוגש את עצמו וחוזר חלילה… מה דעתכם? זאת לעומת הקריסה שבה לנוסע בזמן יש רק אפשרות אחת, בדיוק כמו נסיעה בזמן קלאסית.

דויטש טוען שבמצב של הקריסה מכניקת הקוונטית נותרת מסתורית ופרדוקסאלית. ואילו בפירוש של אברט זה לא כך. ביקומים שבהם המפגש מתרחש הצופה מופיע משומקום (מיקום אחר) והמצב הסופי בכל יקום כזה הוא שיש שתי גרסאות של הצופה, בעלות שני גילאים: כאשר הצופה המבוגר יותר החל את חייו ביקום שבו לא התרחש המפגש. ביקומים שבהם המפגש לא התרחש הצופה נכנס לאזור ונעלם לשומקום (ליקום אחר). במצב הסופי בכל אחד מהיקומים אלה הצופה לא נמצא, כאשר הוא נוסע ליקום שבו התרחש המפגש. כל העולמות של אברט קשורים לאיזו יריעה גדולה שהגיאומטריה שלה אינה מרכיבה את מרחב-הזמן במובן הרגיל של המילה.

סת’ לויד מה-MIT מציע פתרון אחר. הוא מציע ש-CTC מתורת היחסות הכללית הם רק מכניזם אחד אפשרי לנסיעה אחורנית בזמן. לויד מגדיר את ה-CTC כערוץ תקשורת מהעתיד לעבר. מכאן שהוא יכול להשתמש בערוץ התקשורת הקוונטי הידוע שקרוי טלפורטציה: המעבר המושלם של מצב קוונטי בין שני גורמים (שנהוג לכנותם בשם אליס ובוב), תוך שימוש במצב שזירה משותף: שזירה קוונטית – שני חלקיקים זהים במיקומים שונים מחוברים בדרך כזו, שכאשר אנחנו משנים את המצב של חלקיק אחד, החלקיק האחר מיד משתנה באותו האופן, ולא משנה כמה רחוק הוא מהחלקיקי הראשון. שזירה זו משולבת במדידה קוונטית ותקשורת קלאסית מצידו של בוב והיא שמאפשרת למצבים קוונטיים להיות משוגרים בין השולח למקבל.

חוקרים שונים הראו שטלפורטציה קוונטית יכולה להוביל למסע בזמן (שזירה קוונטית ושיגור). בדיוק כמו שמכניקת הקווטנים מאפשרת טלפורטציה בחלל היא גם לא פוסלת טלפורטציה בזמן. השזירה הקוונטית פועלת גם בחלל וגם בזמן (במרחב-זמן). חוקרים הציעו שזירה בזמן. אם נשנה את המצב של החלקיק היום דבר זה יכול לשנות את מצבו של אותו החלקיק מחר, גם אם החלקיק לא יתקיים בין היום למחר. הדבר המוזר ביותר בנוגע לטלפורטציה הוא שהיא מתרחשת מיד, כלומר מיד כאשר החלקיק נעלם אתמול הוא יופיע מחר. הגיוני?!? לכן חלקיקים קוונטיים שזורים מסוגלים לנוע לעתיד מבלי למעשה להיות נוכחים במהלך הזמן בין העכשיו לעתיד. נגיד שאנחנו רוצים לבצע טלפורטציה לנוסע בזמן ממקום אחד לשני. אנחנו יוצרים זוג שזור A ו-B וממקמים אותם האחד ב-A והשני ב-B. למעשה נוסע בזמן לא יכול לנסוע במהלך הזה ורק מידע קוונטי שלגמרי מתאר את הנוסע עובר בין התחנות. המידע נע מ-A לעבר B ולכן המדידות ב-A התחילו את המסע. אבל מכיוון שהטלפורטציה מתרחשת באופן מיידי ניתן לומר באותו האופן שהמדידה בנקודה B גרמה למסע. אז מי עורר את מי במהלך הזה?

שאלה זו גרמה ללויד לחקור גרסה של CTC המבוססת על שילוב בין טלפורטציה קוונטית ופוסט סלקציה (postselection). מתקבל כתוצאה מסע בזמן שקרוי post-selected time travel . שילוב זה מוביל לערוץ קוונטי לעבר שגם נותן פתרון קונסיסטנטי לפרדוקס הסבא.

הפוסט סלקציה או הבחירה המאוחרת עובדת בצורה הבאה: נתונים לנו מספר גדול של ביטים שמהם אנחנו רוצים להרכיב מידע משמעותי. נשאלת השאלה איזה צירוף של ביטים ייתן מידע שהוא בעל משמעות? הדרך היעילה ביותר לפתור את הבעיה היא לנסות כל צירוף של ביטים עד שנמצא את הצירוף שעובד. אבל זהו מהלך מאוד מייגע. הבחירה המאוחרת פותרת את הבעיה באופן הבא: מנסים צירופים שונים בצורה אקראית ואז אחר כך מבצעים בחירה שהתנאי לה הוא שהתשובה צריכה להיות תשובה נכונה. בצורה הזו אוטומטית מתעלמים מהתשובות הלא נכונות. במחשוב קוונטי: פירושו לאפשר למחשב הקוונטי לבחור תוצאות מסוימות ולא אחרות.

אנחנו צריכים לחפש ולבחור אירועים שבהם צירופים מסוימים של ביטים מובילים למידע מסוים מכיוון שמזהים צירופים שהתרחשו אחרי שהורכב המידע המדובר בפוסט סלקציה. כלומר, פוסט סלקציה פירושה שמבצעים סלקציה של תכונה לאחר שהחלק העיקרי של הניסוי למעשה כבר הסתיים. דוגמא ידועה: פוטון יכול להתנהג כמו חלקיק או גל (דואליות חלקיק-גל). הדרך שבה הוא מתנהג תלויה במכשיר המדידה. שני האספקטים, חלקיק או גל, שהם בלתי תואמים, אף פעם לא נצפים בו-זמנית. זוהי הקומפלמנטריות במכניקת הקוונטים, פשר קופנהגן. כדי לגשר בין הניבויים של מכניקת הקוונטים והשכל הישר, הוצע שהחלקיקים הקוונטיים יודעים מראש באמצעות משתנים חבויים איזה ניסוי יבוצע בהם. לפי זה הם יכולים להחליט איזו התנהגות לגלות לנו. רעיון זה הופרך על ידי וילר בניסוי “הבחירה המאוחרת”. וילר ביצע גרסה של ניסוי החריץ הכפול באמצעות אינטרפרומטר מאך-זנדר ובקרה קלאסית על מפצלי הקרניים (בחירה מאוחרת האם לסגור או לפתוח את האינטרפרומטר). הצופה בוחר האם לבדוק את הטבע הגלי או החלקיקי של הפוטון אחרי שהוא כבר עבר את החריצים על ידי זה שהוא שולט במפצלי הקרניים. לכן החלקיק לא יכול לדעת מראש באמצעות משתנים חבויים את סוג הניסוי שיבוצע. הניסוי של וילר בוצע והניבויים הקוונטיים אושרו. לאחרונה הוצע ניסוי בחירה מאוחרת קוונטי באמצעות מפצל קרניים קוונטי במצב של סופרפוזיציה של קיים לא קיים והאינטרפרומטר במצב סופרפוזיציה של פתוח-סגור בו-זמנית ולכן הוא יכול למדוד את ההתנהגות החלקיקית והגלית של הפוטון באותו הזמן. הפוטון לכן נאלץ להיות במצב של סופרפוזיציה של חלקיק וגל בו-זמנית. אחר כך ניתן לגלות את הפוטון לפני שבוחרים האם האינטרפרומטר הוא פתוח או סגור. פירושו של דבר שניתן לבחור האם הפוטון מתנהג כמו חלקיק או גל אחרי הוא התגלה. ולכן הבקרה הקוונטית מאפשרת לחקור תחום שלא ניתן לחקירה קלאסית.

לויד אומר שניתן להסביר זאת על ידי ניסוי המחשבה המפורסם של החתול של שרדינגר: הרבה אחרי שהחתול של שרדינגר לכאורה נהרג או לא, הצופה יכול לבחור לקבוע האם הוא מת או חי או לקבוע האם הוא מת וחי.

האם אנשים יוכלו לבצע מסע לעבר בצורה קונסיסטנטית מבלי להיתקל בפרדוקסים הידועים של מסע בעבר? כנראה שמחברי ספרי המדע בדיוני יוכלו עתה לקבל השראה מהתיאוריה החדשה של לויד ולכתוב על מסע בזמן באמצעות טלפורטציה קוונטית ופוסט סלקציה. כיצד המכניזם של לויד פועל?

נגיד שיש נוסע שנע על CTC – הוא נע סביב ואחורה בזמן. השזירה היא בין החלקים הנעים קדימה ואחורה של הלולאה. במקום לשזור שני פוטונים כמו במהלך טלפורטציה קוונטית רגיל לויד ואפרים שטיינברג שזרו שני מאפיינים של פוטון אחד: הקיטוב של הפוטון (שמייצג את ההווה של הפוטון) והמסלול שלו (שמייצג את העבר שלו). אחר כך הם הכניסו לוחית גל שיכולה לשנות או לא את הקיטוב של הפוטון. מכיוון שהקיטוב והמסלול של הפוטון שזורים, לוחית הגל משפיעה על המסלול, כלומר על העבר. המהלך הזה מוביל לכך שלוחית הגל פועלת כל אימת שהטלפורטציה נכשלת (כלומר ניתן היה להרוג את הסבא כל אימת שלא ניתן היה לנסוע בזמן לעבר) ולוחית הגל לא פועלת כל אימת שהטלפורטציה מצליחה (כלומר לא ניתן היה להרוג את הסבא כל אימת שניתן היה לנסוע חזרה לעבר).

תחת התנאים האלה מסע בזמן יכול להתרחש רק בצורה קונסיסטנטית ולא פרדוקסאלית על גבי לולאות סגורות דמוי זמניות שעברו פוסט סלקציה. אלה מספקות מכונת זמן קוונטית שנמנעת מפרדוקס הסבא. מצבים שזורים על לולאות כאלה מאפשרים מסע בזמן גם כאשר לולאות סגורות דמוי דמזניות CTC במרחב-זמן (כלומר יחסותיות כלליות) כלל אינן קיימות.

נגיד שאליס יוצרת מצב אחד שזור בזמן אחד כלשהו ומשגרת לבוב את מה שהיא יצרה. בזמן מאוחר יותר בוב יוצר מכונת זמן מחור תולעת קומפקטי וזה מאפשר לו לשלוח את החלקיק השזור לזמן קצר כלשהו אחורנית בזמן. נוצר CTC. בוב בוחר בצורה דטרמיניסטית לשלוח שרשרת של ביטים לאליס בעבר. בוב קורא הוכחה למשפט כלשהו בספר ושולח את ההוכחה הישר לאליס. אליס כתוצאה מפרסמת את ההוכחה בספר בעבר ואת זה בדיוק בוב קורא. מאיפה ההוכחה באה?…

אליס יכולה להשתמש במידע שבוב שולח חזרה אליה בזמן כדי לכתוב משפט בספר. בעתיד של אליס, בוב משתמש באותו הספר שבו אליס כתבה את המשפט כדי להחליט איזה מידע לשלוח אליה חזרה לזמן ולכן אליס למדה את המשפט מבוב ובוב למד אותו מאליס.

לויד טוען שכאשר בוחנים את הפרדוקס לעומק רואים ש-CTC ופוסט סלקציה מתערבת ומונעת מהפרדוקס מלהתרחש. בוב בוחר את הנתונים והוא כותב את ההוכחה ולכן הוא המחבר של ההוכחה. באותו האופן אם אליס מודעת לבחירות של בוב, היא יכולה לכתוב את המשפט כאשר היא בוחרת את המצב ההתחלתי ואז היא המחברת של המשפט בספר בעבר. ככה ניתן להבחין בין המחבר בעתיד למחבר בעבר.

לויד אומר שהמכניזם שלו למסע בזמן מתאים לטלפון של וילר מכיוון שניתן ליישם אותו ליצירה ולשיגור של זוגות חלקיק-אנטי חלקיק בשזירה קוונטית. חלקיקים קוונטיים דוגמת הפוטונים והאלקטרונים לא כבולים לחץ הזמן. המצב הקוונטי שמתאר אותם מתפתח גם קדימה וגם אחורה בזמן. למעשה ניתן לחשוב שלכאורה אין סיבתיות במכניקת הקוונטים ושמה שקורה בעתיד יכול להשפיע על העבר. כזכור וילר הראה בניסוי הבחירה המאוחרת, שפוטון שלא נצפה חולף דרך שני חריצים בו-זמנית ועדיין הוא יכול להיות מושפע על ידי מדידה מאוחרת שמתרחשת אחרי שהניסוי לכאורה הסתיים.

ניתן לחשוב על מסע בזמן לעבר בהעדר לולאות סגורות דמוי זמניות יחסותיות כלליות בפורמליזם שאותו לויד מציע כמו על מעין מנהור קוונטי אחורנית בזמן, שיכול להתרחש גם בהעדר מסלול קלאסי מהעתיד לעבר.

למעשה כל תיאוריה של מסע בזמן קוונטי מניבה תוצאות מוזרות, שהן נוגדות את ההיגיון והן גם פתולוגיות. מכאן שהחוקרים מתווכחים ביניהם על המודלים השונים.

צ’רלס בנט העלה התנגדות למודל של לויד. אמנם פרדוקס הסבא לא יתרחש, אבל יקרו יותר מידי אירועים אפשריים אבל לא סבירים: לדוגמא, נגיד שיש יצרן כדורי רובה. תהיה לו נטייה רבה יותר לייצר כדורי רובה פגומים אם הכדור הזה עומד לשמש נוסע בזמן כדי להרוג את הסבא שלו, או שהרובה שלו לא יוכל לירות בסבא, או שאיזו פלוקטואציה קוונטית תגרום לרובה לטעות ולירות לכיוון אחר ולא לסבא ברגע האחרון; והרי לא סביר שליצרן כדורי רובה תהיה נטייה רבה יותר ליצור כדורי רובה פגומים. זוהי הסתברות מעוותת שהיא מאוד קרובה לפרדוקס שאותו רוצים למנוע. שואל דניאל גוטסמן: מה ההבדל בין הפרדוקס שאותו אנחנו רוצים למנוע ובין ההסתברות המעוותת הזו? כאשר משנים את הפיסיקה בדרך הזו, מתרחשים דברים מוזרים וזהו דבר בלתי נמנע מכיוון שאנחנו עוסקים ב-CTC ובמסע בזמן.