I watched the first episode of National Geographic’s drama. The episode jumps between a few different periods in Einstein’s life: Einstein the rebel and celebrity (“professor Einstein”) during the rise of Nazism in Germany and the young stubborn and rebel Einstein in Switzerland.

The first episode opens in 1922 Berlin, with the assassination of the German foreign minister Walter Rathenau. Then Einstein is getting intimate with his secretary Betty Neumann. Einstein is shown with his pants down. Subsequently his lover Betty is pressed against the blackboard and he holds the chalk on a blackboard full of chalk-drawn formulas.

Indeed, Einstein was not a saint. He was a liberal humanist and pacifist and he exploited his fame to advance anti-war cause and save Jews from the Nazi regime and oppose Nazism and later McCarthyism in America. However, he was constantly romantically entangled with other women. He divorced from Mileva whom he had mistreated when their marriage was on the rocks. He soon married his cousin, Elsa. He was not deeply in love with her and it seems she was eager to get married with Albert Einstein, the celebrity and genius, and he was simply drawn into marrying her. When Einstein hired Betty Neumann as his secretary, of course they immediately began an affair.

Elsa seemed to have turned a blind eye when he cheated because she enjoyed the attention and fame, being Albert Einstein’s wife, and he enjoyed the freedom to be with other women. He needed Elsa to take care of him and understand his needs (including his romantic needs with other women). First he married Mileva. He thought she would understand him, be his lover and sounding board, because she was a physics student. However, he finally realized that he needed a caregiver.

Geoffrey Rush as the older version of Albert Einstein is not exactly Einstein but he plays Einstein’s role very well. Einstein, however, was a quirky, weirdly shabby dressed genius:

He did not bother to shave, to comb his hair, to dress properly because he believed all this was a waste of time. He had a great sense of cynical humor and he was a rebel even as a grownup. The older Einstein of “Genius” does not exactly trap the special looks and personality of Einstein. Rush is more masculine than the real Einstein. Look at the photos of Albert Einstein:

History of the red star line.

In the BBC film *Einstein and Eddington* Einstein, the young genius, is played with lusty relish by Andy Serkis (New Scientist). I would combine the two actors, Rush and Serkis, and the result would be quite a good representation of Einstein.

Back to the 1922 blackboard.

What are these formulas?

Quirky formulas. These expressions neither look like equations of general relativity nor like a static universe line element – Einstein’s cosmological model from 1917 until 1930. Do they represent a version of Einstein’s unified field theory? In 1922 Einstein was only starting to develop his unified field theory. It seems the producers have copied random formulas from a certain document.

The National Geographic science consultant is the physicist Prof. Clifford Johnson.

Johnson tells what was it like advising to Genius. Here.

This is the Einstein tensor (Einstein’s field equations):

On the right-hand side one finds the value of:

Thus:

Einstein though did not write his field equations in this form, at least not before 1919. And he added the condition that the above field equations are valid in unimodular coordinates:

This condition is not written on the blackboard.

There is no cosmological constant in these field equations. Until 1931 Einstein added the cosmological constant to his field equations.

And here on the bottom left-hand side of the photo, the right-hand side of the other blackboard, one sees the Ricci scalar:

The Ricci scalar is the second term on the left-hand side of the Einstein tensor.

When did the lecture take place?

The field equations on the blackboard:

do not include the cosmological constant. In 1917 Einstein modified his field equations to include the cosmological constant and he gave up this constant in 1931-1932. Hence, the lecture could either take place in Berlin 1916 or in California after 1931.

First, here Einstein had drawn on the blackboard the vanishing Ricci tensor:

Setting the Ricci tensor equal to zero is writing the vacuum field equations (field equations for the gravitational field in empty space). Space is empty: There is no matter present and there are only gravitational fields. This perfectly makes sense if Einstein is lecturing in 1916. However, Einstein does not look like the young Albert Einstein. He thus must be lecturing in 1932 in California and not in Berlin.

Therefore, Einstein is lecturing in 1932 because in 1932 Einstein and de-Sitter suggested the Einstein de-Sitter model (a variant of Friedmann’s expanding universe) by assuming a universe with a cosmological constant equal to zero and “without introducing a curvature at all… we suppose the curvature to be zero” (i.e. a vanishing spatial curvature). In 1932 Einstein came to Pasadena and there with Willem de Sitter they worked on their joint paper. In Pasadena he thus asked whether the Ricci tensor could be set equal to zero:

In 1932 Einstein was 53 years old. He did not come back to Germany. Thus he could not have given a lecture in Berlin.

On the other side of the blackboard, at the bottom of the blackboard, on the right-hand side, one sees the Christoffel symbols (“the components of the gravitational field”). These should not vanish:

In the middle of the blackboard one sees the Minkowski spatial flat metric of special relativity:

The components of the metric tensor reduce to this Minkowski flat metric.

On top of the blackboard on the right-hand side, Einstein’s line element:

Beneath the Einstein tensor of general relativity one sees the time dilation formula from special relativity. It is not directly related to the Einstein tensor and especially it is written in a special relativistic form, i.e. in a coordinate-dependent form, not in a form of a metric theory of general relativity. It is thus completely unrelated to the other formulas on the blackboard:

Einstein wrote in the 1930s such formulas on blackboards. Generally, he never mixed on one blackboard special relativity (in coordinate-dependent form) with general relativity (in metric form).

The younger Einstein, Johnny Flynn is rather compelling. He captures Einstein’s charm quite well. The scene of the beam rider thought experiment:

was inspired by Carl Sagan’s memorable series Cosmos, the episode on the twin paradox:

**Second episode**: There are many historical inaccuracies in the second episode. Heinrich Friedrich Weber, Einstein’s physics professor is presented as someone who understands Einstein: The young Weber was also an impudent rebel. Poor Weber, he had to deal with Einstein, the rebel who flirted and mistreated Mileva Maric. Einstein thought that Weber’s courses where a masterpiece. Weber only wanted to help Einstein and suffered the consequences of being Einstein’s professor. That is the reason why he eventually turned on Einstein.

This is inaccurate. Weber seemed to have a particular dislike for Einstein. At the Zürich Polytechnic, Einstein could not easily bring himself to study what did not interest him and he skipped classes, especially those of mathematicians. He did not persuade Mileva to do the same thing (in the second episode one sees Einstein between the sheets persuading Mileva to skip classes). It seems to me pure invention.

Although Einstein had skipped classes and Weber’s lectures were old-fashioned (the latter did not provide the latest studies in physics, e.g. Maxwell’s theory), most of his time Einstein spent on his own studying Maxwell’s theory and learning at first hand the works of great pioneers in science and philosophy: Boltzmann, Helmholtz, Kirchhoff, Hertz, Mach. It is not true that most of his time he spent with Mileva between the sheets.

Eventually, Einstein finished first in his class in the intermediate exams, because he studied very hard on his own. He borrowed Marcel Grossmann’s notebooks and learned very hard from these notebooks. Second after him was his note taker Grossmann. Although Grossmann worked hard, he was not as genius as Einstein.

After obtaining the diploma, when he sought university positions all over Europe, Einstein was rebuffed because it seems that Weber was against him. Weber had a particular dislike for Einstein: Einstein thought that Weber’s lectures were a little old-fashioned, that he was a mediocre and not creative because he had essentially ceased doing scientific research before Einstein even entered the Polytechnic. During Einstein’s years at the Polytechnic, Weber published only one scholarly paper. Einstein told Mileva that Weber lectures are a masterpiece. He later realized, however, that Weber’s lectures were a masterpiece in history of physics rather than in physics.

Indeed, Weber told Einstein: “You’re a clever fellow! But you have one fault. You won’t let anyone tell you a thing”. However, he did not appreciate Einstein enough, i.e. he did not understand the rebel Einstein. By his distrust of authority Einstein had alienated Weber, but Weber could not understand Einstein.

As to the Chubby professor Jean Pernet. Einstein had no prospects with him. He was completely not fond of Einstein and he told Einstein he had no idea how difficult was the path of physics and that he should try some other field instead.