פילוסופיה של הפיזיקה – בעית המדידה ופירושים למכניקת הקוונטים

המכניקה הקלאסית היא דטרמיניסטית. ניתן לגמרי לנבא את ההתפתחות בזמן של המערכת כאשר קבענו את הפתרון למשוואת התנועה. בנוסף, בעקרון ניתן לצפות במערכת קלאסית מבלי להפריע למצבה. ההתפתחות הזמנית של המערכות הקוונטיות נתונה על ידי משוואת שרדינגר. המצב הקוונטי (וקטור המצב) של המערכת הקוונטית גם הוא מתפתח בצורה דטרמיניסטית בהתאם למשוואת שרדינגר הדטרמיניסטית והליניארית. בדיוק כמו בפיסיקה הקלאסית, בהינתן המצב ההתחלתי של המערכת וההמילטוניאן, ניתן בעקרון לחשב את המצב בזמן שרירותי. אבל משוואת שרדינגר מציבה קושי כאשר רוצים לספק לה פירושים: בהינתן תנאי התחלתי כלשהו המערכת שמתוארת על ידי המצב הקוונטי מתפתחת למצב שמכיל סופרפוזיציה של מצבים. מבחינה מתמטית עקרון הסופרפוזיציה במכניקת הקוונטים יסודו בליניאריות של מרחב הילברט. אם נתונים שני מצבים קוונטיים, לפי מכניקת הקוונטים כל קומבינציה ליניארית שלהם מתאימה למצב קוונטי אפשרי. היה צורך להסביר כיצד במדידה מתקבלת תוצאת אחת מתוך ריבוי תוצאות אפשריות.

הפירוש הראשון שהסביר זאת היה פשר קופנהגן שגובש ב-1928 על ידי נילס בוהר. בוהר טען שהמכשיר הקלאסי הכרחי לביצוע המדידות כדי שהתופעות המכניות קוונטיות תהיינה נגישות לצופה (המקרוסקופי) במונחים של העולם הקלאסי מהניסיון שלו. מכשיר המדידה נשלט על ידי חוקים פיסיקאליים קלאסיים ואינו מתואר במונחים מכניים קוונטיים. מכשיר המדידה מראה ערך מוגדר אחד בגלל שהוא שייך לעולם המקרוסקופי הקלאסי (שם אין סופרפוזיציה). תורת הקוונטים היא לא אוניברסאלית. יש להבחין בין העולם הקוונטי לקלאסי וישנו גבול שחוצץ בין השניים. לא ניתן להזיזו מבלי להרוס את האינטראקציה בין מכשיר המדידה למערכת הקוונטית ואת התופעה הנצפית. בעקרון ניתן למדוד את החושים שלנו, העיניים ומערכת העצבים ולהתייחס אליהם כאל עצם קוונטי, בתנאי שנמצא מכשיר קלאסי מתאים שיבצע את המשימה. מכאן שאין לנסות לקבל את הפיסיקה הקלאסית כנובעת ממבנה קוונטי. תורת הקוונטים היא תיאוריה שלמה והפיסיקה הקלאסית היא פיסיקה שקדמה למכניקת הקוונטים. פשר קופנהגן הוא אינו הפירוש הסטנדרטי (האורתודוקסי) למכניקת הקוונטים.

ב-1932 ג’ון פון נוימן כתב את ספרו היסודות המתמטיים של מכניקת הקוונטים. בספר הוא נתן פירוש למדידה הקוונטית. לעומת פשר קופנהגן, פון נוימן טען שכאשר מערכת קוונטית היא באינטראקציה עם מכשיר מדידה, אינטראקציה זו עצמה נתונה לחוקי מכניקת הקוונטים והיא מתוארת על ידם. מתארים מכשיר מדידה כמערכת קוונטית מכנית. אנחנו נמצאים באינטראקציה עם מכשיר המדידה ומפרשים את תוצאות המדידה במונחים של הערכים העצמיים של המערכת הקוונטית. כל מדידה גורמת לקפיצה לא רציפה בהתפתחות הזמנית האחידה של מצב המערכת הקוונטית; פעולת התצפית במערכת קוונטית באופן בלתי נמנע מפריעה למערכת וגורמת לבחירת אחד מהערכים העצמיים. הדבר נגרם באמצעות קריסת פונקצית הגל לאחד מהמצבים שנקבע על ידי הערכים העצמיים של אופרטור המדידה. מושג קריסת פונקצית הגל של פון נוימן הוא הכרחי כדי להסביר כיצד מערכת קוונטית שהייתה לפני אקט המדידה במצב של סופרפוזיציה היא עתה מומרת למערכת קוונטית שקיימת במצב אחד ויחיד לאחר שתהליך המדידה התרחש. קריסת פונקצית הגל מייצגת שינוי בידע שלנו אודות המערכת, חידוד של הידע שלנו אודות מצב החלקיק הקוונטי; ויותר מזה, לפני המדידה החלקיק הוא במצב בלתי מוגדר – אין לנו ידע מדויק אודות החלקיק עד אשר אנו מודדים אותו, והמדידה עצמה (כלומר מכשיר המדידה עצמו) מכריעה (מכריע) מהו המצב שאותו נוטל החלקיק.

עבור מערכות מיקרוסקופיות מצבי סופרפוזיציה אושרו ניסויית. אבל אנחנו אף פעם לא רואים מצבים כאלה בעולמנו. לפי הפירוש של פון נוימן, סופרפוזיציות מקרוסקופיות אינן במפורש אסורות, אבל אנחנו אף פעם לא צופים בהן בגלל שכל תצפית כזו דורשת אינטראקציה שהיא דמוית מדידה ואז מיד מתרחשת קריסה. הקושי שלנו עם מכניקת הקוונטים הוא הסתירה בין עקרון הסופרפוזיציה, שהוא הדוקטרינה העיקרית במכניקת הקוונטים, והמציאות הקלאסית היומיומית שלנו שבה דומה שהעיקרון מופר.

בשנות ה-1970-80 פותחה תיאוריה חדשה, הדה-קוהרנטיות. שאלו: האם העולם המקרוסקופי הוא קלאסי? מדוע שלא יהיה גם כן קוונטי? אין להתעלם מהעובדה שמכניקת הקוונטים תקפה גם עבור העולם המקרוסקופי ולכן עלינו להבין במסגרת מכניקת הקוונטים מדוע העולם המקרוסקופי מופיע כקלאסי. המטרה של תיאורית הדה-קוהרנטיות היא להסביר את הופעת התופעות הקלאסיות כנובעות מתוך העולם הקוונטי; הסבר זה נעשה על ידי לקיחה בחשבון של התפקיד שיש לסביבה במערכת הקוונטית. לכן חוקרים מערכות קוונטיות פתוחות שלוקחות בחשבון את האפקט הבלתי נמנע של הסביבה.

הדה-קוהרנטיות נובעת מיישום של הפורמליזם הקוונטי לתיאור האינטראקציה של המערכת הפיסיקאלית עם סביבתה. היא אינה פירוש שנועד לפתור את בעיית המדידה. כדי לפתור את בעיית המדידה מוסיפים לפירושים השונים הסבר לפי תיאורית הדה-קוהרנטיות.

כמעט כל מערכת פיסיקאלית צריכה להיות באינטראקציה בדרך כלשהי עם סביבתה, למשל עם הפוטונים מסביב שיוצרים את הניסיון החושי אצל הצופה. בעולם הקוונטי אנחנו רואים שזירה קוונטית בכל מקום. לפי תיאורית הדה-קוהרנטיות, נוצר צימוד כזה בין המערכת לסביבתה, מצב לא לוקאלי בשזירה קוונטית של מערכת-סביבה. בהתאם לשזירה הקוונטית כבר לא ניתן לשייך מצב קוונטי נפרד למערכת הקוונטית כי היא נמצאת בקורלציה עם סביבתה.

נבחן בתחילה מערכת קוונטית טהורה קוהרנטית (מערכת בסופרפוזיציה של מצבים – פונקצית הגל של מצב אחד ופונקצית הגל של המצב השני רוטטות כמעט בצורה מסונכרנת) ומכשיר מדידה. בשלב הראשון המערכת היא באינטראקציה עם מכשיר המדידה וישנה שזירה ביניהם. אבל דרוש הסבר לכך שמתקבלת תוצאה מוגדרת אחת בסיום הניסוי (בעיית המדידה). כאשר המערכת הקוונטית מיוצגת על ידי סופרפוזיציה של מצבים שאותם מכשיר המדידה אמור למדוד, נקבל מצב סופי מורכב: מערכת-מכשיר מדידה בסופרפוזיציה של המצבים של המערכת הקוונטית ושל מכשיר המדידה. לא ניתן ככה לשייך ערך מוגדר ויחיד למכשיר המדידה. להפך, שייכנו ריבוי של תוצאות אפשריות. אולם מכשירי מדידה במהרה נשזרים למספר עצום של דרגות חופש בסביבה, לפוטונים שאין אנו יודעים את מצבם במדויק, והצופה לא יכול למדוד את כל דרגות החופש האלה. בנוסף הסביבה נמצאת בשזירה עם המערכת הקוונטית הנמדדת. כל מערכת קוונטית ממשית היא תמיד באינטראקציה עם הסביבה. מתקבלת שזירה לא לוקאלית בין המערכת הקוונטית-מכשיר המדידה-והסביבה: המערכת המשולבת הזו מתוארת על ידי סופרפוזיציה של מצב מורכב. במצב של הסופרפוזיציה הקוהרנטית (המערכת הקוונטית הטהורה) ישנו מידע רב. כאשר מדובר במערכת קוונטית מיקרוסקופית השזירה עם הסביבה מצמצמת את המידע האפשרי שיש לצופה על המערכת הקוונטית כדי שתוצאת המדידה תהיה קלאסית. כלומר, המערכת הקוונטית בסופרפוזיציה, שהיא שזורה לסביבה, דועכת מאיליה עם הזמן לתוצאת מדידה קלאסית. אבל הליך דה-קוהרנטי זה אינו מסביר מדוע מתקבלת תוצאה אחת ויחידה מוגדרת בסוף הניסוי. הסופרפוזיציה מייצגת מצבים קוונטיים ש”קיימים” בו-זמנית ולכן הסבר זה לא מאפשר לנו לבודד מצב יחיד של מכשיר מדידה שיצביע על תוצאת מדידה מעשית של הניסוי. דומה שזקוקים לצופה ולקריסת פונקצית הגל כדי להסביר זאת. ראו כאן וכאן וכאן

ב-1935 ארווין שרדינגר הציע פרדוקס חתול מקרוסקופי בסופרפוזיציה. למעשה בעקבות ניסוי האפ”ר של איינשטיין, איינשטיין ושרדינגר התכתבו ב-1935. איינשטיין סירב לקבל את מכניקת הקוונטים כתיאוריה שלמה ושרדינגר הציע את אחד מניסויי המחשבה המפורסמים ביותר שפותחו אי פעם – פרדוקס החתול של שרדינגר – כדי לשכנע את איינשטיין העקשן שהעולם הקוונטי הוא אכן מסתורי ומוזר

einstein-bohr

פרדוקס החתול של שרדינגר: “מישהו יכול אפילו לתכנן מקרים מגוחכים למדי. חתול נכלא בתוך כלוב מפלדה, יחד עם הרכיב השטני הבא (שחייבים להגן עליו מחשש להפרעה ישירה מהחתול): במונה גייגר ישנה מעט חתיכת חומר רדיואקטיבי, כה קטנה, שאולי עם חלוף שעה אחת, אחד מהאטומים דועך, אבל גם, באותה הסתברות, אולי אף אחד [לא דועך]. אם זה קורה, שפופרת המונה מתפקרת ובאמצעות תמסורת משחררת פטיש שמנפץ בקבוקון קטן של חומצה הידרוציאנית. אם משאירים את המערכת הזו כולה לבדה למשך שעה, נוכל לומר שהחתול עדין חי אם בינתיים שום אטום לא דעך. דעיכת האטום הראשונה תרעילו. פונקצית הגל של המערכת כולה תבטא זאת על ידי זה שתכלול בתוכה את החתול החי והמת (סליחה על הביטוי) מעורבב או מרוח כולו בחלקים שווים”. ג

182802_10150870716712231_1614171031_n

החתול של שרדינגר: ברמת פונקצית הגל, מתי ה-and הקוונטי הופך ל-or קלאסי?

הפרדוקס מופיע כאשר מנסים לתאר את המצב של המערכת המקרוסקופית בטרם מודדים אותה וכאשר לא צופים בה. נגיד שאנחנו מבטאים שני מצבים קוונטיים של האטום:

1) האטום דועך ופולט אלקטרון 2) האטום נותר במצב של חוסר דעיכה;

ושני מצבים קוונטיים של החתול: 1) החתול מת 2) החתול חי.

שני מצבי המערכת הכוללת שמשלבים את המצבים של האטום הרדיואקטיבי עם המצבים של החתול הם: מצב של אטום שדעך כפול מצב של חתול מת ומצב של אטום שלא דעך כפול מצב של חתול חי. לפי עקרון הסופרפוזיציה הקוונטי המצב הבלתי נצפה של קופסת החתול בטרם היא נפתחת ונמדדת הוא מצב חתול שרדינגר, או בקיצור מצב חתול. זהו המצב הבלתי נצפה של המערכת – המצב של המערכת בטרם הקופסא נפתחה לאחר שעה. למצבי חתול שרדינגר אין כל ממשות. לפי הפירוש הסטנדרטי למכניקת הקוונטים אין מדובר כאן בחתול אמיתי במצב מרוח או תלוי בין חיים למוות ולכן החתול הוא לא חי ולא מת; הדעיכה הרדיואקטיבית היא לא-לא התרחשה וגם לא התרחשה. כלומר, שום דבר הוא לא ממשי עד אשר צופים בו. ולכן הסופרפוזיציה שעליה מדבר שרדינגר (“החתול החי והמת… מעורבב או מרוח כולו בחלקים שווים”) למעשה לא אומרת דבר על מצבו של החתול עצמו, אלא על מצב הידיעה של הצופה, שאינו יודע מהו מצב החתול בטרם ביצע את המדידה. כאשר צופים במערכת והחתול נמצא מת, או אז נגלה גם שהאטום הרדיואקטיבי דעך. לחילופין, אם נגלה שהחתול חי, נגלה גם שהאטום הרדיואקטיבי נותר שלם ולא דעך

לפי הפירוש הדה-קוהרנטי כל מערכת קוונטית ממשית כמו חתול בקופסא מצויה במגע עם סביבתה החיצונית (פוטונים, אטומים וכולי). שזירה זו בין המערכת הקוונטית של החתול בסופרפוזיציה והסביבה שבה היא נמצאת מובילה את החתול בסופרפוזיציה לדעיכה מהירה מאוד למצב של חי או מת. מכיוון שהחתול הוא מערכת מקרוסקופית שמורכבת ממיליארדי אטומים שבאים במגע עם מיליארדי חלקיקים בסביבה, הדה קוהרנטיות מתרחשת כמעט מיד ולכן החתול לא יכול להיות במצב של סופרפוזיציה – גם חי וגם מת – אפילו למשך רגע אחד. הפיזיקאי-פילוסוף דייויד מרמין מספר, שאינשטיין הלך לטייל בפרינסטון עם חברו אברהם פייס והם שוחחו על מושג המציאות האובייקטיבית. לפתע אינשטיין נעצר ושאל את פייס: האם אתה באמת מאמין שהירח קיים רק כאשר אתה מביט בו? לפי הדה-קוהרנטיות לא זקוקים לצופה שיביט בחתול, הסופרפוזיציה דועכת מאליה…  ג

פרדוקס החתול של שרדינגר וקריסת פונקצית הגל הובילו לויכוח בנושא הקריסה. האם רעיון הקריסה הוא הכרחי להסבר מדוע לפני הליך המדידה המערכת הקוונטית נמצאת במצב חתול שרדינגר מוזר של סופרפוזיציה, ואילו אחרי שבוחרים בפרוצדורת מדידה מסוימת, המערכת קיימת רק במצב אחד ויחיד?

ב-1957 יו אברט, בעידודו של ג’ון ארצ’יבלד וילר, פיתח את תיאורית המצבים היחסיים. אברט הציע:

“להניח שהתיאור הקוונטי תקף בצורה אוניברסאלית על ידי ביטול […קריסת פונקצית הגל]. מניחים את התקיפות הכללית של מכניקת הגלים הטהורה עבור כל המערכות הקוונטיות כולל צופים ומכשירי מדידה, ללא קביעות סטטיסטיות. תהליכי המדידה מתוארים לגמרי על ידי פונקצית המצב של המערכת המורכבת שכוללת את הצופה ומערכת המושא שלו, שבהם שולטת משוואת הגלים בכל הזמנים”.

בעוד שפשר קופנהגן קובע גבול ברור בין האזור הקוונטי לקלאסי, כאשר הוא מאפשר מעבר לאזור הקלאסי רק של תוצאת מדידה אחת על ידי האינטראקציה בין מכשיר המדידה הקלאסי למערכת הקוונטית, הפירוש של אברט לגמרי משמיט את הגבול הזה. אברט קובע שכל האיברים בסופרפוזיציה של המצב הכולל למעשה מתאימים למצבים פיסיקאליים עם תום המדידה. בפירוש הסטנדרטי למכניקת הקוונטים יש סופרפוזיציה של שני מצבים ואז קריסה למצב אחד. אברט ביטל את הקריסה ולכן כל פעם כאשר יש מדידה נוספים מצבים יחסיים, או איברים בסופרפוזיציה.

אברט מסביר: “כל התהליכים נבחנים באותה מידה (אין ‘תהליך מדידה’ שמשחק תפקיד מועדף)…”. ולכן הוא מציע “תיאור קונסיסטנטי של היקום שבו כמה צופים הם בפעולה”. אברט מסביר את הצורך בריבוי צופים: “הבה נבחן את הצופה כתת-מערכת של המערכת המורכבת: צופה+מערכת מושא. המסקנה הבלתי נמנעת היא, לאחר שהאינטראקציה התרחשה, כבר לא יהיה קיים באופן כללי מצב של צופה יחיד. אמנם המערכת תהיה בסופרפוזיציה של מצבים מורכבים, כאשר כל איבר מייצג מצב צופה מוגדר ומצב מערכת-מושא יחסי מוגדר. בנוסף, כפי שנראה, כל אחד ממצבי מערכת המושא היחסיים האלה ייצג בקירוב את הערכים העצמיים של התצפית שמתאימים לערך שנתקבל על ידי הצופה ומתואר על ידי אותו איבר בסופרפוזיציה. לכן, כל איבר בסופרפוזיציה המתקבלת מתאר צופה שמרגיש תוצאה מוגדרת ובאופן כללי שונה, והוא סבור שמצב מערכת-המושא עבר טרנספורמציה למצב העצמי המתאים. במובן זה דומה שהקביעות הרגילות של […קריסת פונקצית הגל] הן תקיפות מבחינה סובייקטיבית עבור כל צופה שמתואר על ידי איבר בסופרפוזיציה”.

אם מבטלים את קריסת פונקצית הגל ומשאירים את הצופה היחיד, מגיעים למסקנה שיש לנו צופה שמסוגל לבצע מספר אינסופי של ניסויים ולצפות בתוצאה של כולם. זה בלתי אפשרי, כי אף אחד לא מסוגל לבצע אינסוף ניסויים. בנוסף תורת היחסות הפרטית מציבה גבול על היכולת הפראקטית של אותו צופה יחיד בגלל שחלק מהניסויים יצטרכו להתבצע מחוץ לקונוס האור של הצופה, ופירושו, שהוא לא יוכל בכלל לבצעם. לכן מגיעים למסקנה שדרושים ריבוי של צופים בעולמות נפרדים, כאשר בכל עולם צופה עוקב אחר רצף אירועים סיבתי.

בהתחלה לא התייחסו לפירוש של אברט עד אשר ב-1970 ברייס דה ויט ויחד עם ניל גראהם ב-1973 הביאו את הרעיון לידיעת הציבור. דה ויט הסביר את התיאוריה של אברט על ידי פירוש העולמות המרובים לפיו כל איבר בסופרפוזיציה מייצג מצב פיסיקאלי אמיתי שממומש בענף של מציאות אחרת. וכל מצב פיסיקאלי כזה הוא יחסי לענף של עולמות מקרוסקופיים שמתפצלים. ג’ון וילר אמר שהחלקיק “באמת יהיה בשני מקומות שונים בו זמנית”, כלומר בשני עולמות שונים בו-זמנית… לכן המצב הכולל מייצג עולמות מרובים, כאשר כל אחד מהם מוגדר מבחינה מקרוסקופית. אולם מתי בדיוק מתרחשת ההתפצלות? ההתפצלות מתרחשת כל הזמן ובכל מקום. אם המדידה יוצרת צימוד בין מכשיר המדידה למערכת הקוונטית, כל פעם כאשר צימוד כזה מתרחש קורית התפצלות; ואם מניחים שההתפצלות היא לעולם ממשי, המשמעות של זה היא בעייתית מאוד. פירוש כזה קובע קבוצה אינסופית של ענפים נפרדים שהם תואמים לאירועים נפרדים של הניסיון שלנו.

מכאן שאין הסתברויות בפירוש העולמות המרובים, מכיוון שכל תוצאה למעשה מתרחשת בעולם כלשהו. דומה שזה סותר את הפירוש הסטנדרטי למכניקת הקוונטים, שמאפשר מימוש תוצאה אחת בלבד, מכיוון שכל תוצאה אפשרית מאוכלסת על ידי ענף של פונקצית הגל של היקום שהולך ומתרבה.

מבחינת הקשיים, הפירוש הסטנדרטי ופירוש העולמות המרובים נתקלים באותו הקושי: למה אני הצופה רואה רק אפשרות אחת מבין אינסוף האפשרויות? מתי, איפה, איך (ומי?) מחליטים איזו אפשרות יקבל איזה צופה מבין אינסוף הצופים בביפורקציה בעולמות המרובים? בפירוש העולמות המרובים לא ניתן להגדיר אילו מצבים של היקום מתאימים לענפים השונים. בגרסה המקורית של פירוש העולמות המרובים, הצופה בעולם שלו הוא בדיוק כמו הצופה בפירוש הסטנדרטי למכניקת הקוונטים – מימש תוצאת מדידה אחת.

נבחן גרסת אברט לפרדוקס החתול של שרדינגר שמדגים זאת. לפי פירוש העולמות המרובים, שתי האפשרויות של חתול חי וחתול מת מובילות לשתי קבוצות הסתעפויות שונות: בקבוצת הסתעפות אחת החתול מת ובקבוצת ההסתעפות השנייה החתול חי. נגיד שבעולמנו הצופה פתח את הקופסא ומצא שהחתול מת. לפי פירוש העולמות המרובים בעולם אחר החתול חי. לכן אם החתול מת בעולם הזה, הוא קם לתחייה בעולם מקביל אחר. אולם, מבחינת הצופה בעולמנו החתול מת. ולכן ניתן לטעון, שאברט לא חידש דבר: אין הבדל בין קריסת פונקצית הגל לבין פירוש העולמות המרובים; נשאלת לכן השאלה: האם הצופה יכול להיות עד לפיצול העולמות? והתשובה היא: הצופה לא מודע לפיצול ולהעתקים המרובים שלו, כי הפיצול מתרחש לעבר עתידים מרובים, כך שישנם המוני עותקים שלו בתוך יקומים מנותקים זה מזה. הבעיות האלה ואחרות צצות בגלל שהעולמות המרובים של אברט נחשבים למשהו שהוא אפשרי ובעל ממשות פיזיקאלית. מצב של פיצול כזה, כל פעם כאשר ישנה הכרעה ומדידה, יגרום לפיצוץ אוכלוסין של יקומים, כלומר, מספר היקומים יגדל כל רגע וכל שנייה בצורה מעריכית. כל רגע נולד יקום חדש עם העתק של צופה כלשהו.

ברבות השנים נולדה גרסה חדשה יותר לעולמות המרובים לפיה אין לראות בעולמות המרובים כביפורקציה –  כמו מעין עץ שיוצאים ממנו ענפים כל פעם שישנו אקט מדידה – או מעין מודל פרקטלי. מדובר במספר אינסופי של עולמות מקבילים. לפיכך, לפי פירוש העולמות המקבילים, במקום העולם שמתפצל לענפים נפרדים כתוצאה מהמעבר הקוונטי, המצבים השונים של הסופרפוזיציה מתחלקים בין מספר אינסופי של עולמות מקבילים. מאוחר יותר הוצע פירוש לפיו כל מצב פיסיקאלי מתאים למחשבה אחת מבין הרבה מחשבות של אותו הצופה (פירוש המחשבות המרובות).

בגרסאותיה השונות תורת המצבים היחסיים של אברט מופיעה כעולמות מרובים, מחשבות מרובות, עולמות מתפצלים, עולמות מקבילים, עולם פיסיקאלי אחד שמתפצל לאספקטים שונים, וכולי.

תומכי הדה-קוהרנטיות נטו באופן טבעי לאמץ את פירוש העולמות המרובים בגלל שזה נראה אך טבעי לשייך את הרכיבים הדה קוהרנטיים השונים של פונקצית הגל עם ענפים מתפצלים שונים של אברט; ולהפך הדה קוהרנטיות דומה שגם פתרה בעיות בתורת העולמות המרובים: מחשבות מרובות מובילות צופה למצב של סכיזופרניה. כאשר יש אינטראקציה בין המערכת הקוונטית לצופה ומכשיר המדידה שלו (הוא מבצע מדידה במערכת הקוונטית), המערכת הקוונטית ומכשיר המדידה של הצופה הם שזורים. המצב התודעתי של הצופה נכנס למצב של סופרפוזיציה קוהרנטי של שני מצבי מדידה (שיכולים להתאבך זה עם זה). כל מצב תודעתי מודד מצב אחר של המערכת הקוונטית. מדוע אם כן הצופה אף פעם לא יכול להיות מודע למצב הסופרפוזיציה הסכיזופרני של מחשבתו? מדוע מבחינתו הוא למעשה מודע למדידת תוצאה אחת? ההסבר הוא שיש דיכוי מהיר של ההתאבכות בין מצבי התודעה השונים של הצופה על ידי תהליך הדה-קוהרנטיות בין המצבים התודעתיים של הצופה. זה מונע ממצבי הזיכרון השונים מלהתאבך וככה כל מצב זיכרון נפרד מייצג זהות נפרדת של הצופה.

למעשה אין הבדל בין קריסת פונקצית הגל לפירוש העולמות המרובים בגלל שהעולמות מנותקים זה מזה. אולי חורי תולעת יכולים לסייע לצופים לתקשר ביניהם? לפני שנה לאונרד זוסקינד מאוניברסיטת סטנפורד בפאלו אלטו ורלף בואסו מברקלי הציעו את הרעיון הבא: ישנם קוסמולוגים שחושבים שהיקום שלנו נברא יחד עם מספר עצום, יתכן שאינסופי, של יקומים אחרים. לכן היקום שלנו הוא רק יקום אחד קטנטן בסדרה של מולטי-יקומים. זוסקינד ובואסו הציעו שהמולטי-יקומים והפירוש של העולמות המרובים למכניקת הקוונטים הם פורמאלית זהים. כלומר העולמות המרובים של מכניקת הקוונטים והעולמות המרובים של המולטי-יקומים הם אותו הדבר בדיוק. גם בפירוש העולמות המרובים וגם בתיאורית המולטי יקומים מביטים על העולם כעל אוסף של יקומים מקבילים.

 ראו כאן.

Advertisements

One thought on “פילוסופיה של הפיזיקה – בעית המדידה ופירושים למכניקת הקוונטים

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s