פילוסופיה של הפיזיקה – בעית המדידה ופירושים למכניקת הקוונטים

המכניקה הקלאסית היא דטרמיניסטית. ניתן לגמרי לנבא את ההתפתחות בזמן של המערכת כאשר קבענו את הפתרון למשוואת התנועה. בנוסף, בעקרון ניתן לצפות במערכת קלאסית מבלי להפריע למצבה. ההתפתחות הזמנית של המערכות הקוונטיות נתונה על ידי משוואת שרדינגר. המצב הקוונטי (וקטור המצב) של המערכת הקוונטית גם הוא מתפתח בצורה דטרמיניסטית בהתאם למשוואת שרדינגר הדטרמיניסטית והליניארית. בדיוק כמו בפיסיקה הקלאסית, בהינתן המצב ההתחלתי של המערכת וההמילטוניאן, ניתן בעקרון לחשב את המצב בזמן שרירותי. אבל משוואת שרדינגר מציבה קושי כאשר רוצים לספק לה פירושים: בהינתן תנאי התחלתי כלשהו המערכת שמתוארת על ידי המצב הקוונטי מתפתחת למצב שמכיל סופרפוזיציה של מצבים. מבחינה מתמטית עקרון הסופרפוזיציה במכניקת הקוונטים יסודו בליניאריות של מרחב הילברט. אם נתונים שני מצבים קוונטיים, לפי מכניקת הקוונטים כל קומבינציה ליניארית שלהם מתאימה למצב קוונטי אפשרי. היה צורך להסביר כיצד במדידה מתקבלת תוצאת אחת מתוך ריבוי תוצאות אפשריות.

הפירוש הראשון שהסביר זאת היה פשר קופנהגן שגובש ב-1928 על ידי נילס בוהר. בוהר טען שהמכשיר הקלאסי הכרחי לביצוע המדידות כדי שהתופעות המכניות קוונטיות תהיינה נגישות לצופה (המקרוסקופי) במונחים של העולם הקלאסי מהניסיון שלו. מכשיר המדידה נשלט על ידי חוקים פיסיקאליים קלאסיים ואינו מתואר במונחים מכניים קוונטיים. מכשיר המדידה מראה ערך מוגדר אחד בגלל שהוא שייך לעולם המקרוסקופי הקלאסי (שם אין סופרפוזיציה). תורת הקוונטים היא לא אוניברסאלית. יש להבחין בין העולם הקוונטי לקלאסי וישנו גבול שחוצץ בין השניים. לא ניתן להזיזו מבלי להרוס את האינטראקציה בין מכשיר המדידה למערכת הקוונטית ואת התופעה הנצפית. בעקרון ניתן למדוד את החושים שלנו, העיניים ומערכת העצבים ולהתייחס אליהם כאל עצם קוונטי, בתנאי שנמצא מכשיר קלאסי מתאים שיבצע את המשימה. מכאן שאין לנסות לקבל את הפיסיקה הקלאסית כנובעת ממבנה קוונטי. תורת הקוונטים היא תיאוריה שלמה והפיסיקה הקלאסית היא פיסיקה שקדמה למכניקת הקוונטים. פשר קופנהגן הוא אינו הפירוש הסטנדרטי (האורתודוקסי) למכניקת הקוונטים.

ב-1932 ג’ון פון נוימן כתב את ספרו היסודות המתמטיים של מכניקת הקוונטים. בספר הוא נתן פירוש למדידה הקוונטית. לעומת פשר קופנהגן, פון נוימן טען שכאשר מערכת קוונטית היא באינטראקציה עם מכשיר מדידה, אינטראקציה זו עצמה נתונה לחוקי מכניקת הקוונטים והיא מתוארת על ידם. מתארים מכשיר מדידה כמערכת קוונטית מכנית. אנחנו נמצאים באינטראקציה עם מכשיר המדידה ומפרשים את תוצאות המדידה במונחים של הערכים העצמיים של המערכת הקוונטית. כל מדידה גורמת לקפיצה לא רציפה בהתפתחות הזמנית האחידה של מצב המערכת הקוונטית; פעולת התצפית במערכת קוונטית באופן בלתי נמנע מפריעה למערכת וגורמת לבחירת אחד מהערכים העצמיים. הדבר נגרם באמצעות קריסת פונקצית הגל לאחד מהמצבים שנקבע על ידי הערכים העצמיים של אופרטור המדידה. מושג קריסת פונקצית הגל של פון נוימן הוא הכרחי כדי להסביר כיצד מערכת קוונטית שהייתה לפני אקט המדידה במצב של סופרפוזיציה היא עתה מומרת למערכת קוונטית שקיימת במצב אחד ויחיד לאחר שתהליך המדידה התרחש. קריסת פונקצית הגל מייצגת שינוי בידע שלנו אודות המערכת, חידוד של הידע שלנו אודות מצב החלקיק הקוונטי; ויותר מזה, לפני המדידה החלקיק הוא במצב בלתי מוגדר – אין לנו ידע מדויק אודות החלקיק עד אשר אנו מודדים אותו, והמדידה עצמה (כלומר מכשיר המדידה עצמו) מכריעה (מכריע) מהו המצב שאותו נוטל החלקיק.

עבור מערכות מיקרוסקופיות מצבי סופרפוזיציה אושרו ניסויית. אבל אנחנו אף פעם לא רואים מצבים כאלה בעולמנו. לפי הפירוש של פון נוימן, סופרפוזיציות מקרוסקופיות אינן במפורש אסורות, אבל אנחנו אף פעם לא צופים בהן בגלל שכל תצפית כזו דורשת אינטראקציה שהיא דמוית מדידה ואז מיד מתרחשת קריסה. הקושי שלנו עם מכניקת הקוונטים הוא הסתירה בין עקרון הסופרפוזיציה, שהוא הדוקטרינה העיקרית במכניקת הקוונטים, והמציאות הקלאסית היומיומית שלנו שבה דומה שהעיקרון מופר.

בשנות ה-1970-80 פותחה תיאוריה חדשה, הדה-קוהרנטיות. שאלו: האם העולם המקרוסקופי הוא קלאסי? מדוע שלא יהיה גם כן קוונטי? אין להתעלם מהעובדה שמכניקת הקוונטים תקפה גם עבור העולם המקרוסקופי ולכן עלינו להבין במסגרת מכניקת הקוונטים מדוע העולם המקרוסקופי מופיע כקלאסי. המטרה של תיאורית הדה-קוהרנטיות היא להסביר את הופעת התופעות הקלאסיות כנובעות מתוך העולם הקוונטי; הסבר זה נעשה על ידי לקיחה בחשבון של התפקיד שיש לסביבה במערכת הקוונטית. לכן חוקרים מערכות קוונטיות פתוחות שלוקחות בחשבון את האפקט הבלתי נמנע של הסביבה.

הדה-קוהרנטיות נובעת מיישום של הפורמליזם הקוונטי לתיאור האינטראקציה של המערכת הפיסיקאלית עם סביבתה. היא אינה פירוש שנועד לפתור את בעיית המדידה. כדי לפתור את בעיית המדידה מוסיפים לפירושים השונים הסבר לפי תיאורית הדה-קוהרנטיות.

כמעט כל מערכת פיסיקאלית צריכה להיות באינטראקציה בדרך כלשהי עם סביבתה, למשל עם הפוטונים מסביב שיוצרים את הניסיון החושי אצל הצופה. בעולם הקוונטי אנחנו רואים שזירה קוונטית בכל מקום. לפי תיאורית הדה-קוהרנטיות, נוצר צימוד כזה בין המערכת לסביבתה, מצב לא לוקאלי בשזירה קוונטית של מערכת-סביבה. בהתאם לשזירה הקוונטית כבר לא ניתן לשייך מצב קוונטי נפרד למערכת הקוונטית כי היא נמצאת בקורלציה עם סביבתה.

נבחן בתחילה מערכת קוונטית טהורה קוהרנטית (מערכת בסופרפוזיציה של מצבים – פונקצית הגל של מצב אחד ופונקצית הגל של המצב השני רוטטות כמעט בצורה מסונכרנת) ומכשיר מדידה. בשלב הראשון המערכת היא באינטראקציה עם מכשיר המדידה וישנה שזירה ביניהם. אבל דרוש הסבר לכך שמתקבלת תוצאה מוגדרת אחת בסיום הניסוי (בעיית המדידה). כאשר המערכת הקוונטית מיוצגת על ידי סופרפוזיציה של מצבים שאותם מכשיר המדידה אמור למדוד, נקבל מצב סופי מורכב: מערכת-מכשיר מדידה בסופרפוזיציה של המצבים של המערכת הקוונטית ושל מכשיר המדידה. לא ניתן ככה לשייך ערך מוגדר ויחיד למכשיר המדידה. להפך, שייכנו ריבוי של תוצאות אפשריות. אולם מכשירי מדידה במהרה נשזרים למספר עצום של דרגות חופש בסביבה, לפוטונים שאין אנו יודעים את מצבם במדויק, והצופה לא יכול למדוד את כל דרגות החופש האלה. בנוסף הסביבה נמצאת בשזירה עם המערכת הקוונטית הנמדדת. כל מערכת קוונטית ממשית היא תמיד באינטראקציה עם הסביבה. מתקבלת שזירה לא לוקאלית בין המערכת הקוונטית-מכשיר המדידה-והסביבה: המערכת המשולבת הזו מתוארת על ידי סופרפוזיציה של מצב מורכב. במצב של הסופרפוזיציה הקוהרנטית (המערכת הקוונטית הטהורה) ישנו מידע רב. כאשר מדובר במערכת קוונטית מיקרוסקופית השזירה עם הסביבה מצמצמת את המידע האפשרי שיש לצופה על המערכת הקוונטית כדי שתוצאת המדידה תהיה קלאסית. כלומר, המערכת הקוונטית בסופרפוזיציה, שהיא שזורה לסביבה, דועכת מאיליה עם הזמן לתוצאת מדידה קלאסית. אבל הליך דה-קוהרנטי זה אינו מסביר מדוע מתקבלת תוצאה אחת ויחידה מוגדרת בסוף הניסוי. הסופרפוזיציה מייצגת מצבים קוונטיים ש”קיימים” בו-זמנית ולכן הסבר זה לא מאפשר לנו לבודד מצב יחיד של מכשיר מדידה שיצביע על תוצאת מדידה מעשית של הניסוי. דומה שזקוקים לצופה ולקריסת פונקצית הגל כדי להסביר זאת. ראו כאן וכאן וכאן

ב-1935 ארווין שרדינגר הציע פרדוקס חתול מקרוסקופי בסופרפוזיציה. למעשה בעקבות ניסוי האפ”ר של איינשטיין, איינשטיין ושרדינגר התכתבו ב-1935. איינשטיין סירב לקבל את מכניקת הקוונטים כתיאוריה שלמה ושרדינגר הציע את אחד מניסויי המחשבה המפורסמים ביותר שפותחו אי פעם – פרדוקס החתול של שרדינגר – כדי לשכנע את איינשטיין העקשן שהעולם הקוונטי הוא אכן מסתורי ומוזר

einstein-bohr

פרדוקס החתול של שרדינגר: “מישהו יכול אפילו לתכנן מקרים מגוחכים למדי. חתול נכלא בתוך כלוב מפלדה, יחד עם הרכיב השטני הבא (שחייבים להגן עליו מחשש להפרעה ישירה מהחתול): במונה גייגר ישנה מעט חתיכת חומר רדיואקטיבי, כה קטנה, שאולי עם חלוף שעה אחת, אחד מהאטומים דועך, אבל גם, באותה הסתברות, אולי אף אחד [לא דועך]. אם זה קורה, שפופרת המונה מתפקרת ובאמצעות תמסורת משחררת פטיש שמנפץ בקבוקון קטן של חומצה הידרוציאנית. אם משאירים את המערכת הזו כולה לבדה למשך שעה, נוכל לומר שהחתול עדין חי אם בינתיים שום אטום לא דעך. דעיכת האטום הראשונה תרעילו. פונקצית הגל של המערכת כולה תבטא זאת על ידי זה שתכלול בתוכה את החתול החי והמת (סליחה על הביטוי) מעורבב או מרוח כולו בחלקים שווים”. ג

182802_10150870716712231_1614171031_n

החתול של שרדינגר: ברמת פונקצית הגל, מתי ה-and הקוונטי הופך ל-or קלאסי?

הפרדוקס מופיע כאשר מנסים לתאר את המצב של המערכת המקרוסקופית בטרם מודדים אותה וכאשר לא צופים בה. נגיד שאנחנו מבטאים שני מצבים קוונטיים של האטום:

1) האטום דועך ופולט אלקטרון 2) האטום נותר במצב של חוסר דעיכה;

ושני מצבים קוונטיים של החתול: 1) החתול מת 2) החתול חי.

שני מצבי המערכת הכוללת שמשלבים את המצבים של האטום הרדיואקטיבי עם המצבים של החתול הם: מצב של אטום שדעך כפול מצב של חתול מת ומצב של אטום שלא דעך כפול מצב של חתול חי. לפי עקרון הסופרפוזיציה הקוונטי המצב הבלתי נצפה של קופסת החתול בטרם היא נפתחת ונמדדת הוא מצב חתול שרדינגר, או בקיצור מצב חתול. זהו המצב הבלתי נצפה של המערכת – המצב של המערכת בטרם הקופסא נפתחה לאחר שעה. למצבי חתול שרדינגר אין כל ממשות. לפי הפירוש הסטנדרטי למכניקת הקוונטים אין מדובר כאן בחתול אמיתי במצב מרוח או תלוי בין חיים למוות ולכן החתול הוא לא חי ולא מת; הדעיכה הרדיואקטיבית היא לא-לא התרחשה וגם לא התרחשה. כלומר, שום דבר הוא לא ממשי עד אשר צופים בו. ולכן הסופרפוזיציה שעליה מדבר שרדינגר (“החתול החי והמת… מעורבב או מרוח כולו בחלקים שווים”) למעשה לא אומרת דבר על מצבו של החתול עצמו, אלא על מצב הידיעה של הצופה, שאינו יודע מהו מצב החתול בטרם ביצע את המדידה. כאשר צופים במערכת והחתול נמצא מת, או אז נגלה גם שהאטום הרדיואקטיבי דעך. לחילופין, אם נגלה שהחתול חי, נגלה גם שהאטום הרדיואקטיבי נותר שלם ולא דעך

לפי הפירוש הדה-קוהרנטי כל מערכת קוונטית ממשית כמו חתול בקופסא מצויה במגע עם סביבתה החיצונית (פוטונים, אטומים וכולי). שזירה זו בין המערכת הקוונטית של החתול בסופרפוזיציה והסביבה שבה היא נמצאת מובילה את החתול בסופרפוזיציה לדעיכה מהירה מאוד למצב של חי או מת. מכיוון שהחתול הוא מערכת מקרוסקופית שמורכבת ממיליארדי אטומים שבאים במגע עם מיליארדי חלקיקים בסביבה, הדה קוהרנטיות מתרחשת כמעט מיד ולכן החתול לא יכול להיות במצב של סופרפוזיציה – גם חי וגם מת – אפילו למשך רגע אחד. הפיזיקאי-פילוסוף דייויד מרמין מספר, שאינשטיין הלך לטייל בפרינסטון עם חברו אברהם פייס והם שוחחו על מושג המציאות האובייקטיבית. לפתע אינשטיין נעצר ושאל את פייס: האם אתה באמת מאמין שהירח קיים רק כאשר אתה מביט בו? לפי הדה-קוהרנטיות לא זקוקים לצופה שיביט בחתול, הסופרפוזיציה דועכת מאליה…  ג

פרדוקס החתול של שרדינגר וקריסת פונקצית הגל הובילו לויכוח בנושא הקריסה. האם רעיון הקריסה הוא הכרחי להסבר מדוע לפני הליך המדידה המערכת הקוונטית נמצאת במצב חתול שרדינגר מוזר של סופרפוזיציה, ואילו אחרי שבוחרים בפרוצדורת מדידה מסוימת, המערכת קיימת רק במצב אחד ויחיד?

ב-1957 יו אברט, בעידודו של ג’ון ארצ’יבלד וילר, פיתח את תיאורית המצבים היחסיים. אברט הציע:

“להניח שהתיאור הקוונטי תקף בצורה אוניברסאלית על ידי ביטול […קריסת פונקצית הגל]. מניחים את התקיפות הכללית של מכניקת הגלים הטהורה עבור כל המערכות הקוונטיות כולל צופים ומכשירי מדידה, ללא קביעות סטטיסטיות. תהליכי המדידה מתוארים לגמרי על ידי פונקצית המצב של המערכת המורכבת שכוללת את הצופה ומערכת המושא שלו, שבהם שולטת משוואת הגלים בכל הזמנים”.

בעוד שפשר קופנהגן קובע גבול ברור בין האזור הקוונטי לקלאסי, כאשר הוא מאפשר מעבר לאזור הקלאסי רק של תוצאת מדידה אחת על ידי האינטראקציה בין מכשיר המדידה הקלאסי למערכת הקוונטית, הפירוש של אברט לגמרי משמיט את הגבול הזה. אברט קובע שכל האיברים בסופרפוזיציה של המצב הכולל למעשה מתאימים למצבים פיסיקאליים עם תום המדידה. בפירוש הסטנדרטי למכניקת הקוונטים יש סופרפוזיציה של שני מצבים ואז קריסה למצב אחד. אברט ביטל את הקריסה ולכן כל פעם כאשר יש מדידה נוספים מצבים יחסיים, או איברים בסופרפוזיציה.

אברט מסביר: “כל התהליכים נבחנים באותה מידה (אין ‘תהליך מדידה’ שמשחק תפקיד מועדף)…”. ולכן הוא מציע “תיאור קונסיסטנטי של היקום שבו כמה צופים הם בפעולה”. אברט מסביר את הצורך בריבוי צופים: “הבה נבחן את הצופה כתת-מערכת של המערכת המורכבת: צופה+מערכת מושא. המסקנה הבלתי נמנעת היא, לאחר שהאינטראקציה התרחשה, כבר לא יהיה קיים באופן כללי מצב של צופה יחיד. אמנם המערכת תהיה בסופרפוזיציה של מצבים מורכבים, כאשר כל איבר מייצג מצב צופה מוגדר ומצב מערכת-מושא יחסי מוגדר. בנוסף, כפי שנראה, כל אחד ממצבי מערכת המושא היחסיים האלה ייצג בקירוב את הערכים העצמיים של התצפית שמתאימים לערך שנתקבל על ידי הצופה ומתואר על ידי אותו איבר בסופרפוזיציה. לכן, כל איבר בסופרפוזיציה המתקבלת מתאר צופה שמרגיש תוצאה מוגדרת ובאופן כללי שונה, והוא סבור שמצב מערכת-המושא עבר טרנספורמציה למצב העצמי המתאים. במובן זה דומה שהקביעות הרגילות של […קריסת פונקצית הגל] הן תקיפות מבחינה סובייקטיבית עבור כל צופה שמתואר על ידי איבר בסופרפוזיציה”.

אם מבטלים את קריסת פונקצית הגל ומשאירים את הצופה היחיד, מגיעים למסקנה שיש לנו צופה שמסוגל לבצע מספר אינסופי של ניסויים ולצפות בתוצאה של כולם. זה בלתי אפשרי, כי אף אחד לא מסוגל לבצע אינסוף ניסויים. בנוסף תורת היחסות הפרטית מציבה גבול על היכולת הפראקטית של אותו צופה יחיד בגלל שחלק מהניסויים יצטרכו להתבצע מחוץ לקונוס האור של הצופה, ופירושו, שהוא לא יוכל בכלל לבצעם. לכן מגיעים למסקנה שדרושים ריבוי של צופים בעולמות נפרדים, כאשר בכל עולם צופה עוקב אחר רצף אירועים סיבתי.

בהתחלה לא התייחסו לפירוש של אברט עד אשר ב-1970 ברייס דה ויט ויחד עם ניל גראהם ב-1973 הביאו את הרעיון לידיעת הציבור. דה ויט הסביר את התיאוריה של אברט על ידי פירוש העולמות המרובים לפיו כל איבר בסופרפוזיציה מייצג מצב פיסיקאלי אמיתי שממומש בענף של מציאות אחרת. וכל מצב פיסיקאלי כזה הוא יחסי לענף של עולמות מקרוסקופיים שמתפצלים. ג’ון וילר אמר שהחלקיק “באמת יהיה בשני מקומות שונים בו זמנית”, כלומר בשני עולמות שונים בו-זמנית… לכן המצב הכולל מייצג עולמות מרובים, כאשר כל אחד מהם מוגדר מבחינה מקרוסקופית. אולם מתי בדיוק מתרחשת ההתפצלות? ההתפצלות מתרחשת כל הזמן ובכל מקום. אם המדידה יוצרת צימוד בין מכשיר המדידה למערכת הקוונטית, כל פעם כאשר צימוד כזה מתרחש קורית התפצלות; ואם מניחים שההתפצלות היא לעולם ממשי, המשמעות של זה היא בעייתית מאוד. פירוש כזה קובע קבוצה אינסופית של ענפים נפרדים שהם תואמים לאירועים נפרדים של הניסיון שלנו.

מכאן שאין הסתברויות בפירוש העולמות המרובים, מכיוון שכל תוצאה למעשה מתרחשת בעולם כלשהו. דומה שזה סותר את הפירוש הסטנדרטי למכניקת הקוונטים, שמאפשר מימוש תוצאה אחת בלבד, מכיוון שכל תוצאה אפשרית מאוכלסת על ידי ענף של פונקצית הגל של היקום שהולך ומתרבה.

מבחינת הקשיים, הפירוש הסטנדרטי ופירוש העולמות המרובים נתקלים באותו הקושי: למה אני הצופה רואה רק אפשרות אחת מבין אינסוף האפשרויות? מתי, איפה, איך (ומי?) מחליטים איזו אפשרות יקבל איזה צופה מבין אינסוף הצופים בביפורקציה בעולמות המרובים? בפירוש העולמות המרובים לא ניתן להגדיר אילו מצבים של היקום מתאימים לענפים השונים. בגרסה המקורית של פירוש העולמות המרובים, הצופה בעולם שלו הוא בדיוק כמו הצופה בפירוש הסטנדרטי למכניקת הקוונטים – מימש תוצאת מדידה אחת.

נבחן גרסת אברט לפרדוקס החתול של שרדינגר שמדגים זאת. לפי פירוש העולמות המרובים, שתי האפשרויות של חתול חי וחתול מת מובילות לשתי קבוצות הסתעפויות שונות: בקבוצת הסתעפות אחת החתול מת ובקבוצת ההסתעפות השנייה החתול חי. נגיד שבעולמנו הצופה פתח את הקופסא ומצא שהחתול מת. לפי פירוש העולמות המרובים בעולם אחר החתול חי. לכן אם החתול מת בעולם הזה, הוא קם לתחייה בעולם מקביל אחר. אולם, מבחינת הצופה בעולמנו החתול מת. ולכן ניתן לטעון, שאברט לא חידש דבר: אין הבדל בין קריסת פונקצית הגל לבין פירוש העולמות המרובים; נשאלת לכן השאלה: האם הצופה יכול להיות עד לפיצול העולמות? והתשובה היא: הצופה לא מודע לפיצול ולהעתקים המרובים שלו, כי הפיצול מתרחש לעבר עתידים מרובים, כך שישנם המוני עותקים שלו בתוך יקומים מנותקים זה מזה. הבעיות האלה ואחרות צצות בגלל שהעולמות המרובים של אברט נחשבים למשהו שהוא אפשרי ובעל ממשות פיזיקאלית. מצב של פיצול כזה, כל פעם כאשר ישנה הכרעה ומדידה, יגרום לפיצוץ אוכלוסין של יקומים, כלומר, מספר היקומים יגדל כל רגע וכל שנייה בצורה מעריכית. כל רגע נולד יקום חדש עם העתק של צופה כלשהו.

ברבות השנים נולדה גרסה חדשה יותר לעולמות המרובים לפיה אין לראות בעולמות המרובים כביפורקציה –  כמו מעין עץ שיוצאים ממנו ענפים כל פעם שישנו אקט מדידה – או מעין מודל פרקטלי. מדובר במספר אינסופי של עולמות מקבילים. לפיכך, לפי פירוש העולמות המקבילים, במקום העולם שמתפצל לענפים נפרדים כתוצאה מהמעבר הקוונטי, המצבים השונים של הסופרפוזיציה מתחלקים בין מספר אינסופי של עולמות מקבילים. מאוחר יותר הוצע פירוש לפיו כל מצב פיסיקאלי מתאים למחשבה אחת מבין הרבה מחשבות של אותו הצופה (פירוש המחשבות המרובות).

בגרסאותיה השונות תורת המצבים היחסיים של אברט מופיעה כעולמות מרובים, מחשבות מרובות, עולמות מתפצלים, עולמות מקבילים, עולם פיסיקאלי אחד שמתפצל לאספקטים שונים, וכולי.

תומכי הדה-קוהרנטיות נטו באופן טבעי לאמץ את פירוש העולמות המרובים בגלל שזה נראה אך טבעי לשייך את הרכיבים הדה קוהרנטיים השונים של פונקצית הגל עם ענפים מתפצלים שונים של אברט; ולהפך הדה קוהרנטיות דומה שגם פתרה בעיות בתורת העולמות המרובים: מחשבות מרובות מובילות צופה למצב של סכיזופרניה. כאשר יש אינטראקציה בין המערכת הקוונטית לצופה ומכשיר המדידה שלו (הוא מבצע מדידה במערכת הקוונטית), המערכת הקוונטית ומכשיר המדידה של הצופה הם שזורים. המצב התודעתי של הצופה נכנס למצב של סופרפוזיציה קוהרנטי של שני מצבי מדידה (שיכולים להתאבך זה עם זה). כל מצב תודעתי מודד מצב אחר של המערכת הקוונטית. מדוע אם כן הצופה אף פעם לא יכול להיות מודע למצב הסופרפוזיציה הסכיזופרני של מחשבתו? מדוע מבחינתו הוא למעשה מודע למדידת תוצאה אחת? ההסבר הוא שיש דיכוי מהיר של ההתאבכות בין מצבי התודעה השונים של הצופה על ידי תהליך הדה-קוהרנטיות בין המצבים התודעתיים של הצופה. זה מונע ממצבי הזיכרון השונים מלהתאבך וככה כל מצב זיכרון נפרד מייצג זהות נפרדת של הצופה.

למעשה אין הבדל בין קריסת פונקצית הגל לפירוש העולמות המרובים בגלל שהעולמות מנותקים זה מזה. אולי חורי תולעת יכולים לסייע לצופים לתקשר ביניהם? לפני שנה לאונרד זוסקינד מאוניברסיטת סטנפורד בפאלו אלטו ורלף בואסו מברקלי הציעו את הרעיון הבא: ישנם קוסמולוגים שחושבים שהיקום שלנו נברא יחד עם מספר עצום, יתכן שאינסופי, של יקומים אחרים. לכן היקום שלנו הוא רק יקום אחד קטנטן בסדרה של מולטי-יקומים. זוסקינד ובואסו הציעו שהמולטי-יקומים והפירוש של העולמות המרובים למכניקת הקוונטים הם פורמאלית זהים. כלומר העולמות המרובים של מכניקת הקוונטים והעולמות המרובים של המולטי-יקומים הם אותו הדבר בדיוק. גם בפירוש העולמות המרובים וגם בתיאורית המולטי יקומים מביטים על העולם כעל אוסף של יקומים מקבילים.

 ראו כאן.

Advertisements

פילוסופיה של הפיזיקה – הפרדוקס של איינשטיין-פודולסקי-רוזן, אפ”ר ותורת היחסות הפרטית

תיאור קוונטי אורתודוקסי של מערכת קשור בשלושה אלמנטים: משייכים למערכת מצב קוונטי (וקטור במרחב הילברט). ההמילטוניאן של המערכת קובע כיצד המצב הזה יתפתח עם הזמן כל עוד לא מבוצעת מדידה על המערכת. לבסוף כאשר מבוצעת מדידה או תצפית על המערכת המצב הקוונטי משתנה בצורה בלתי רציפה וזו משקפת את תוצאת המדידה, מה שקרוי קריסת גל.

כאשר מבצעים מדידות על שני חלקיקים נפרדים ורחוקים זה מזה, אבל החלקיקים הם בקורלציה קוונטית, כלומר במצב של שזירה קוונטית, כמו בניסוי של איינשטיין, פודולסקי ורוזן (ניסוי אפ”ר), מוצאים שהמאפיינים של חלקיק אחד נקבעים על ידי תוצאות המדידה בחלקיק האחר. פירושו שתצפית בצד אחד של הניסוי גורמת לקריסת המצב הקוונטי לערך מוגדר. לאיזה ערך מוגדר? לפי הפירוש האורתודוקסי למכניקת הקוונטים הדבר אינו בשליטתנו. קריסת פונקצית הגל היא תהליך מיידי ובלתי תלוי בהפרדה המרחבית בין שני החלקיקים.

איינשטיין, פודולסקי ורוזן הציעו את ניסוי אפ”ר EPR ב-1935. מהניבויים של מכניקת הקוואנטים ועקרון אי הודאות, ישנן קבוצות מסוימות של משתנים, שאם אחד מהם ידוע בוודאות האחר לחלוטין לא ידוע. בשפה המתמטית של תורת הקוונטים אומרים שאם האופרטורים עבור שני משתנים נצפים אינם קומוטטיביים, רק משתנה אחד מבין שני המשתנים יכול להיות ידוע בדיוק ברגע נתון. אם ניקח את המיקום והתנע כדוגמא. עקרון אי הודאות אומר לנו שאם אנו יודעים את התנע המדויק של המערכת, נניח של חלקיק חופשי, המיקום שלו הוא לגמרי בלתי ידוע. כך שאם התנע של חלקיק ידוע בהסתברות שהיא 1, אנו לא יכולים לדעת בהסתברות 1 את המיקום של אותו חלקיק.

כתוצאה מעיקרון אי הודאות של הייזנברג לא ניתן לקבוע בוודאות כמויות בלתי תואמות. דומה שזה מפר את התנאי המספיק לריאליזם של כמות פיזיקאלית, לפיו ניתן לנבא כמות פיזיקאלית בוודאות מבלי להפריע למערכת – (או המאפיינים המדידים של המערכת הפיסיקאלית קיימים ומוגדרים היטב בנפרד מכל השפעה חיצונית ומהתצפיות). לכן, אם לפי עיקרון אי הוודאות לא ניתן לנבא כמות בוודאות מוחלטת, מכניקת הקוונטים היא לא שלמה. אם לא ניתן לדעת בוודאות בו-זמנית את המיקום והתנע של חלקיק, איינשטיין חשב שמכניקת הקוואנטים היא לא שלמה, שחסר בה משהו, משהו ריאליסטי (משתנים חבויים) שכן יאפשר לנו לדעת אותם בוודאות. אבל אפשר לחשוב שמכניקת הקוואנטים היא לגמרי שלמה ושלא חסר בהסבר שלה כלום. במקרה כזה התוצאה של עיקרון אי הוודאות פשוט אומרת לנו שבעיקרון לא ניתן לקבוע בוודאות ערכים בלתי תואמים בו-זמנית.

אפ”ר החליטו להפריך טענה זו. בעזרת ניסוי אפ”ר איינשטיין שאף להראות שלכמויות קומפלמנטריות (בייחוד מיקום ותנע) יכולים להיות ערכים ריאליסטים, אלמנטים של המציאות, בו-זמניים; ואז המסקנה המתבקשת היא שחסר הסבר במכניקת הקוונטים שיכיל אותם. לפיכך, התיאור שמסופק על ידי פונקצית הגל של המערכת לא יהיה שלם ולא ניתן להסיק שמכניקת הקוונטים היא שלמה.

einstein8

אפ”ר הציעו את הניסוי הבא ב-1935: נניח שיש לנו שתי מערכות A ו-B (שיכולות להיות שני חלקיקים חופשיים), שפונקציות הגל שלהן לא ידועות. אחר כך הן באינטראקציה למשך זמן קצר וניתן לקבוע את פונקצית הגל שנובעת מאינטראקציה זו בעזרת משוואת שרדינגר (השנה היא 1935…). נניח שעכשיו המערכות נעות הרחק זו מזו, כל כך רחוק זו מזו, שהן לא יכולות להיות באינטראקציה יותר זו עם זו בשום דרך שהיא. לפי תורת היחסות הפרטית הן מופרדות בצורה כזו ששום סיגנל אור לא יכול לעבור ממערכת אחת לשנייה. מדידות שמבוצעות רחוק זו מזו לא יכולות להשפיע זו על זו. תנאי זה פירושו שההסתברות למדידה על A היא פונקציה של המשתנים של A בלבד. תנאי זה הוא תנאי הלוקאליות. אבל ניתן להסיק את הערכים של מערכת B רק מקריסת פונקצית הגל. בזמן המדידה שתי המערכות הן לא באינטראקציה יותר. לכן הגיוני להניח, כך מסיק איינשטיין, שאם שני החלקיקים A ו-B היו קודם לכן באינטראקציה ואילו עתה הם מופרדים, התוצאות של המדידות על A לא צריכות להשפיע על B בשום דרך שהיא. תנאי זה פירושו שניתן להפריד את ההסתברויות עבור המדידות שמבוצעות על A ועל B (ההסתברויות עבור המדידות של A ו-B הן שתי פונקציות נפרדות ובלתי תלויות זו בזו). זהו תנאי ההפרדה (ספרביליות). כלומר, בזמן שמדידות מבוצעות על מערכת A ישנה מציאות ששייכת למערכת B בלבד. כך מערכת B שומרת על זהותה הנפרדת למרות שהיא קשורה ל-A.

אבל אם יוצאים מתוך ההנחה שמכניקת הקוונטים היא תיאוריה שלמה (הפירוש האורתודוקסי למכניקת הקוונטים שנתקבל כתוצאה מפשר קופנהגן), המדידה על A משנה בצורה טלפתית את המצב של B (הפרה של עקרון הלוקאליות והספרביליות), כי השינוי מתרחש מיידית תוך העברת מידע במהירות אינסופית וזה מפר את עקרון קביעות מהירות האור בתורת היחסות הפרטית; ולפיכך מפר את יחסיות הבו-זמניות.

איינשטיין כמובן מיד נזעק ואמר שלנוכח סתירה בוטה זו, אם למרות ש-A ו-B מופרדים מרחבית – אי לוקלאיות – שניהם נחשבים למערכת אחת, כלומר פונקצית גל בסופרפוזיציה ולא נחשבים לשני חלקים ממשיים נפרדים, אז יש לשייך קיום נפרד לכל אחד משני חלקי המערכת. עלינו להביט על שתי המערכות A ו-B המופרדות מרחבית כבעלות מצבים ריאליסטים נפרדים, שהם בלתי תלויים באקט המדידה. ולכן איינשטיין מסיק מכך שיש לשייך ערכים ריאליסטים עבור התנע והמיקום של המערכת B.

בשנת 1950 דיויד בוהם ניסח מחדש את ניסוי האפ”ר המקורי בצורת מדידה של חלקיקי ספין חצי. באנלוגיה לניסוי המחשבה של בוהם, מכיוון שיותר קל למדוד קיטוב של פוטונים מאשר את הכיוון של חלקיקי ספין חצי, ניתן להשתמש במסנן קיטוב במקום במכשיר שטרן-גרלך. נבחן שני חלקיקים, שכתוצאה מאינטראקציה כלשהי או תהליך יצירה כלשהו, כל אחד מהם יכול לקבל אחד משני מצבים קוונטיים אפשריים. נגיד שהחלקיקים הם פוטונים ושני המצבים האפשריים הם קיטוב אנכי ואופקי. שני הפוטונים תמיד מגיחים מהאינטראקציה במצבים מנוגדים של קיטוב ליניארי: אחד אנכי והשני אופקי, אבל לא שניהם אופקיים או שניהם אנכיים. אין לנו כל דרך מעשית לדעת איזה פוטון מגיח באיזה מצב.

המצב הקוונטי המשולב הדו-חלקיקי הוא שילוב ליניארי של מכפלת המצבים של שני הפוטונים. כתוצאה הפוטונים אבדו את עצמאותם והם בשזירה קוונטית. ב-1964 ג’ון בל פרסם ניסוי מחשבה – שהוא גרסה לניסוי האפ”ר, ניסוי  EPR-BELL – כלומר EPRB שנועד להבחין בין מכניקת הקוונטים לתיאוריות המשתנים החבויים הלוקאליות. בגרסה של בל לניסוי האפ”ר מכניקת הקוונטים ותורות המשתנים החבויים הלוקאליות ניבאו מבחינה סטטיסטית תוצאות ניסוייות שונות.

הגרסה של ניסוי בל, ניסוי EPRB, בוצעה במעבדה על ידי אלן אספה והניבויים של מכניקת הקוונטים אושרו; ולכן הרעיון של איינשטיין לפיו יש לשייך קיום נפרד לכל אחד משני החלקיקים בשזירה הקוונטית בגלל הסתירה עם תורת היחסות הפרטית נפל. בל הדגים תיאורטית שאילו הערכים בקורלציה היו בגלל סיבות לוקאליות, כפי שאיינשטיין סבר, הם היו מספקים סדרה של אי שיוויונים, שברבות הימים נקראו על שמו “אי שוויני בל”. אבל לפי הפירוש של תורת הקוונטים האורתודוקסית והניסויים שבוצעו על ידי אספה והניסויים המאוחרים יותר, אי שוויוני בל מופרים על ידי קריסה מיידית ולא לוקאלית של פונקצית הגל עבור שני הפוטונים; ולכן לא יתכן הסבר לקורלציה בין החלקיקים בניסוי אפ”ר על בסיס הסיבתיות הלוקאלית. ראו כאן.

אם בוחנים את ניסוי אפ”ר במערכת הייחוס של המעבדה ומביטים בדיאגראמת המרחב-זמן של מינקובסקי, מגלים שאירועי המדידה של החלקיקים הקוונטיים בניסוי אפ”ר הם בעלי הפרדה דמוי-מרחבית. לכן כמו שאיינשטיין הבחין לראשונה ב-1935, אם רוצים לספק הסבר לניסוי על בסיס השפעות לוקאליות של חלקיק אחד על השני, ההסבר צריך להיות מבוסס על השפעות שנעות במהירות גבוהה מזו של האור, למעשה במהירות אין סופית; אפשר לומר את זה גם כך: צריך להשיב את הפעולה למרחוק לפיסיקה, שפועלת מיידית, פועלת על חלקיק שנמצא במרחק עצום ממכשיר המדידה שלנו. חיבור לא לוקאלי בין שני חלקיקים מרוחקים מייצג קשיים רבים בפירושים במכניקת הקוונטים והוא מוקד המתיחות בין תורת הקוונטים לתורת היחסות הפרטית – ובגלל המתיחות הזו איינשטיין כתב כעשר שנים מאוחר יותר לחברו מקס בורן ב-1947 שמדובר ב”פעולה למרחוק של רוחות רפאים”.

אבל ברבות הימים חוקרים בכל זאת חשבו שחייבת להיות תקשורת מוזרה בין החלקיקים בשזירה קוונטית והם שאלו את עצמם: האם אנחנו יכולים לנצל את התקשורת המוזרה שקיימת בין הפוטונים השזורים המרוחקים כדי לשלוח הודעות במהירות על אורית?

נבחן ניסוי מחשבה בו ישנה מערכת תקשורת על אורית שפועלת על עקרון השזירה הקוונטית. למערכת יש משדר, מקלט וחוט שמקשר ביניהם והוא מורכב משני פוטונים בקורלציה, שנפלטים ברציפות לכיוונים מנוגדים במרווחי זמן קבועים, כל עשר ננושניות. הפוטונים שמרכיבים זוג מתוזמנים כדי להגיע בו-זמנית למשדר ולמקלט. במשדר יש מתג שמכוון את הפוטון הראשון בין שני מסלולים אופטיים. המסלול הראשון מוביל את הפוטון לפילטר קיטוב שמכוון עם צירו למעבר מקסימאלי בכיוון האנכי והמסלול השני מוביל לפילטר מקטב שמכוון לכיוון האופקי. המשדר מזהה גילוי פוטון שעבר דרך המקטב האנכי כ-1 וכזה שעבר דרך המקטב האופקי כ-0. למקלט שממוקם על הירח יש רק פילטר אחד שמכוון אנכית.

נגיד שישנם שני גלאים, שנהוג לכנותם בז’רגון של תורת הקוונטים בשם אליס ובוב, והם מעבירים ביניהם מסרים. אליס היא על כדור הארץ והיא רוצה לשלוח מסר שמקודד לקוד בינארי בעל ארבע אותיות 1001 לבוב על הירח. הפוטון הנכנס מגיע למתג במשדר והוא מעבירו למקטב האנכי. הגילוי שלו מאלץ את הפוטון של בוב למצב קיטוב אנכי. הספרה הועברה מיידית או במהירויות שהם פי עשרת אלפים ויותר ממהירות האור. כאשר המשדר רוצה לשלוח 0 המתג מעביר את הפוטון הנכנס למקטב האופקי. הגילוי שלו מאלץ את הפוטון של בוב למצב אופקי, שנחסם על ידי המקטב במקלט: מכיוון שהמקלט מצפה לפוטון הבא תוך 10 ננושניות והוא לא מגיע, המקלט מזהה חוסר גילוי כ-0. התהליך נמשך עד שכל הספרות התגלו תוך כמה ננו שניות ולמעשה התקשורת היא מיידית וניתן גם למקם את המקלט על גלקסיה אחרת.

המהלך נראה מושלם, אבל למרבה הצער הוא לא יכול לפעול ולכן אף אחד עד היום לא רשם עליו פטנט. כאשר הפוטון של אליס עובר דרך המתג במשדר הוא לא מנותב אוטומטית למצב של קיטוב אנכי. לפי תורת הקוונטים יש לו הסתברות שווה לקיטוב אנכי ואופקי; ולנו אין כל אמצעי ניבוי מראש מה יהיה הקיטוב. אנחנו יכולים למדוד את הקיטוב של הפוטון אחרי שמתרחשת קריסה, אבל אין שום דרך לשלוט איזה מבין שני הקיטובים יקבל הפוטון במהלך הקריסה. אליס שמודדת ובכך גורמת לקריסה של פוטון אחד מזוג הפוטונים בשזירת אפ”ר לא יכולה בשום דרך ואמצעי מכוון להשפיע על התוצאה שאותה בוב יקבל כאשר הוא מודד את הפוטון האחר. לכן העברת הפוטון של אליס למקטב האנכי לא מבטיחה שהפוטון של בוב יאולץ למצב של קיטוב אנכי. עדיין יש סיכוי של 50 אחוז שהפוטון של בוב יעבור או יחסם על ידי המקטב במקלט שלו. לא ניתן להעביר שום הודעה בין בוב לאליס באמצעות השזירה הקוונטית במהירות על-אורית. הדרך היחידה היא שאליס תודיע לבוב את תוצאות המדידה שהיא ביצעה וקבלה באמצעות ערוץ תקשורת רגיל וקלאסי וזה מגביל את מהירות התקשורת לזו של מהירות האור.

 לפי הפירוש האורתודוקסי למכניקת הקוונטים הקיטובים של הפוטונים הם כלל לא מוגדרים לפני המדידה. בהתחלה שני הפוטונים הם במצבי סופרפוזיציה של קיטוב אנכי וקיטוב אופקי. וכאשר המדידה של פוטון אחד מתרחשת, רק אז שני הפוטונים יחד קורסים לקיטוב מוגדר היטב. מכניקת הקוונטים לא מגדירה במדויק את הקיטובים ומה הם הקיטובים עבור זוג הפוטונים לפני שהם נמדדים. ויותר מזה, מכניקת הקוונטים לא מוכנה בכלל לקבל את המושג “קיטוב מוגדר” של כל אחד מהפוטונים בשזירה כמשהו תקף בתיאוריה. אנחנו יכולים להגדיר את הקורלציה בין הפוטונים, אבל לא את הקיטוב הנפרד של כל פוטון. כל פוטון הוא במצב של שזירה וסופרפוזיציה עם הפוטון האחר.

לכן הקשר הקוונטי פירושו תופעה חדשה. אמנם דומה שהתופעה קונסיסטנטית עם תורת היחסות הפרטית, שאוסרת מעבר מידע במהירות על-אורית, אבל המחיר הוא מסתורין קוונטי. שימו לב שהנימוקים האלה התקבלו מתוך שיקולים קוונטיים ואין כאן כלל נימוקים ייחסותיים והסבר יחסותי.

עתה נתמקד בשיקולים ייחסותיים. בהנחה ששום מסר אינו יכול לנוע מהר יותר מהאור, אם אנחנו רוצים להעביר תשדורת לגבי האופן שבו הגלאים A ו-B המודדים בניסוי האפ”ר יהיו מסודרים, עלינו להעבירה לפני שאנחנו מסדרים את הניסוי כדי שהיא תגיע בזמן. לכן עלינו להניח שהכיוון של הגלאי המרוחק וההתנהגות של הפוטון המרוחק B הם נקבעים על ידי אירועים בתוך קונוס האור של העבר (קונוס העבר). אבל תיאוריה כזו מיד נופלת בגלל שקשה לדמיין שאירועים כאלה בעבר ישפיעו על פוטונים שהם מרוחקים זה מזה. אין שום אמצעי שבאמצעותו סיגנל תת-אורי וסיגנל אורי מהעבר יכול לספק את המידע מצד אחד של הניסוי לצד האחר. גם אם נאפשר לפוטון לבסס את תגובותיו על כל האירועים מקונוס העבר שלו, לא נצליח למצוא אסטרטגיה שתשיב את הקורלציה הקוונטית. הבעיה היא שבעקרון הכיוון של הגלאי המרוחק B לא נקבע על ידי האירועים בקונוס העבר. נגיד שנאמץ תיאוריה לוקאלית דטרמיניסטית (ניתן להשתמש בידע השלם אודות המצב העכשווי של המערכת הפיסיקאלית כדי לקבוע את המצב העתידי של המערכת) או לוקאלית סטוקאסטית; ונניח ששום השפעה סיבתית לא יכולה להתפשט מהר יותר מהאור. גם אם נגיד נבחן אירוע בתוך קונוס העבר והסבר על פי תיאוריה סטוקסטית כזו, לשום אירוע כזה לא יכולה להיות השפעה מחוץ לקונוס האור של העתיד (קונוס העתיד) שלו. האירועים בקונוס העבר יכולים להשפיע רק על האירועים בקונוס העתיד ולא על אירועים שהם מופרדים דמוי-מרחבית. לאירועים בתוך קונוס האור אין השפעה ישירה על אירועים דמוי-מרחביים וישנו חיץ בין הקורלציות הקוונטיות הדמוי-מרחביות (בעלות סיבה משותפת) וכל האירועים בתוך קונוס העבר.

כאשר מצב בשזירה קורס על ידי אינטראקציה עם אחד משני החלקיקים, החלקיק השני קורס באמצעות תהליך לא-לוקאלי וסופרפוזיציה מייצגת מצב בלתי מוגדר (טיעון נגד הריאליזם) והקריסה למצב מסוים היא תהליך אקראי (טיעון נגד הדטרמינזם).

אולם חוקרים ניסו להסביר את ניסוי אפ”ר על ידי תיאורית העולמות המרובים של יו אברט שמשמיטה את קריסת פונקצית הגל לפיה אין קריסה של פונקצית הגל. לכן מדובר בתהליך מדידה ובצופים בשזירה שמתפצלים לעולמות מקבילים. אבל למעשה תיאורית העולמות המרובים היא תיאוריה לוקאלית: התפצלות לעולמות מרובים היא תהליך לוקאלי. בנוסף, כל האפשרויות קיימות בכל העולמות. אם יש חוקרים שמקווים שהמצב הקוונטי ייצג “ממשות” של פוטון, תיאורית העולמות המרובים מעבירה את הריאליזם למקום אחר: יש יותר מידי ריאליזם, ישנן ריבוי מציאויות מוגדרות. פירוש העולמות המרובים מחזיר גם את הדטרמיניזם: פונקצית הגל מתפתחת בהתאם למשוואת גלים דטרמיניסטית וכל תוצאה אפשרית של המדידה מתממשת בעולם משלה. הבעיה היחידה היא שצופה בעולם אחד יכול להתלונן על כך שהוא קיבל תוצאה X ולא Y בניגוד למה שהוא חזה בהתחלה.

נבחן את ניסוי האפ”ר לפי פירוש העולמות המרובים: המדידה של חלקיק A מתפצלת לשתיים באמצעות תהליך לוקאלי ואז שוב מתפצלת. בגלל שאין קריסת פונקצית גל הצופה ליד A צריך להודיע לצופה ליד B את תוצאות המדידה שלו ואז כל אחד מהם מיד מתפצל – וזה קורה באמצעות שרשרת של אירועים לוקאלית במהירות תת-אורית וכמובן ללא סתירה עם תורת היחסות הפרטית.

אולי טכיונים, שבהגדרה נעים מלכתחילה במהירות על-אורית, מסוגלים להסביר את ניסוי האפ”ר והפרת אי שוויוני בל? או אולי בכלל ניתן להשתמש בטכיונים לתקשורת על אורית, סוג נוסף של טלפון בל? האם אפשר לשלוח מסר או טלגרף מאזור מדידה אחד בניסוי אפ”ר לאחר באמצעות תקשורת על-אורית לא לוקאלית טכיונית?

הבעיה בטכיונים היא שמערכות ייחוס שונות עשויות לא להסכים ביניהן על הסדר הזמני שבו מתרחשים האירועים ולכן לגבי מה מרכיב את העבר של אירוע כלשהו, אבל עדיין כל מערכת ייחוס מסוגלת להרכיב סיפור שהוא קונסיסטנטי למבנה הזמני שלה. בסיגנלים שנעים במהירות תת-אורית הפליטה של הסיגנל תמיד מתרחשת לפני קבלתו. לגבי הטכיונים שנעים במהירות על אורית, במערכות ייחוס מסוימות, הקבלה של הסיגנל העל אורי עשויה להיות לפני השליחה שלו. פירושו שהסיגנל נע אחורנית בזמן ולכן במערכות ייחוס אלה התוצאה קודמת לסיבה. הסדר הזמני נובע ממהירות האור ומהעברת הסיגנלים והמידע בסיגנלים. טכיונים גורמים לבעיות בגלל שאם משתמשים בהם לשלוח מסרים אחורנית בזמן תהיה להם אנרגיה שלילית ולכן הם יצרו חוסר יציבות דינמית. האם כדי להעביר מידע הטכיונים זקוקים להעביר אנרגיה? פוטונים חסרי מסה מוגבלים לקונוס האור בגלל שהם נושאים אנרגיה במהירות האור. אבל אם נשתמש בטכיון חסר מסה, האנרגיה והתנע של חלקיק חסר מסה על אורי הם אפס וטכיון כזה יכול להעביר מידע ללא אנרגיה.

נגיד שנצליח לנטרל את האלמנט שהטכיונים נעים אחורנית בזמן על ידי הצבת תנאי קונסיסטנטי כלשהו. כדי לבצע את העבודה הטכיונים צריכים לשאת את המידע במהירות על אורית מצד אחד של ניסוי אפ”ר לאחר. נניח שבניסוי אפ”ר במערכת ייחוס מסוימת (יחסית למערכת המעבדה) כאשר מבוצעת מדידה (אנחנו צופים בפוטון הראשון A), בדיוק ברגע התצפית הזו הפוטון  A שולח טכיון לפוטון השני B והטכיון מעביר לו את המידע שעליו להיות בקורלציה עם תוצאת המדידה שכבר בוצעה על הפוטון הראשון A. כלומר, הטכיון גורם לפוטון B להגיב בהתאם. הטכניונים הם לכן “משתנים חבויים”. במצב זה מניחים שהקיטובים של הפוטונים הם מוגדרים היטב – הנחה ריאליסטית – והם מתוארים במדויק על ידי המשתנים החבויים. ואז במערכות ייחוס מסוימות תסריט זה פועל. אם במערכת ייחוס נתונה אירוע הגילוי של הפוטון הראשון A מתרחש לפני האירוע שבו הטכיון פוגש את הפוטון השני B, רצף האירועים יכול להתפרש כך שהטכיון נפלט כאשר צופים בפוטון A ונבלע על ידי בן זוגו B בדיוק בזמן כדי שתהיה לו השפעה על התנהגותו.

אבל עקב היותו של הטכיון בהגדרה חלקיק שנע במהירות על אורית ישנן מערכות ייחוס שבהן הטכיון הוא חסר תועלת: בהן הטכיון נפלט על ידי הפוטון הראשון A בטרם זה נמדד ולכן הוא אינו מסוגל לשאת מידע שימושי לפוטון השני B בעת שהוא מגיע לאירוע התצפית; וגרוע מזה, הפוטון השני B פולט טכיונים ברגע שבו הפוטון הראשון A מכוון. קורלציות אלה בין פוטונים מרוחקים באירועים דמוי מרחביים הן בדיוק אלה שהתחלנו איתן.

למעשה ישנן בעיות גם במערכות הייחוס שבהן הסדר הזמני הוא נכון: הקיום של הטכיון צריך להיות תלוי באופן המדידה שמבוצעת על הפוטון הראשון A. צריכה להיות קורלציה חזקה בין כיוון מכשיר המדידה של הפוטון A וזה של המכשיר של הפוטון B כדי שזה יקבל מידע שימושי מהטכיון. לכן טכיון שנע במהירות על-אורית מלכחתילה לא עוזר לפתור את אי הלוקאליות והקורלציות הקוונטיות.

אם מביטים על מערכת הקורלציה הדו-חלקיקית של ניסוי אפ”ר מנקודת המבט של תורת השדות הקוונטית, ניתן לחשוב על האפקטים הקוונטיים ככאלה שמשנים את גיאומטרית מינקובסקי. ב-2007 חוקרים הציעו תיאורית משתנים חבויים יחסותית נוספת: עבור מודל אפ”ר האפקטים הקוונטיים גורמים למטריקה המינקובסקית לעבור טרנספורמציה למטריקה חדשה. מתקבלת גיאומטריה שהיא אפקטיבית בעלת שתי סינגולאריות במטריקה והיא בדיוק בעלת תבנית של גשר כמו חור תולעת. בדרך כזו ניתן לפרש את הקורלציות שבניסוי אפ”ר ככאלה שנובעות מחור תולעת אפקטיבי שמקשר בין שני החלקיקים בניסוי אפ”ר ודרכו מועברים או מתפשטים סיגנלים – ולכן לא זקוקים לטכיונים. המרחב-זמן מתעוות, המרחק מתקצר. אבל תיאור כזה מחמיץ את האי-לוקאליות, חוסר הדטרמיניזם וחוסר הריאליזם שבקורלצית האפ”ר.

ב-1999 סטיבן וינברג הציע תיקון לא ליניארי קטן למשוואות הגלים של מכניקת הקוונטים הסטנדרטית. התברר שכאשר מיישמים את התיאוריה של וינברג לקורלציות בין חלקיקי האפ”ר ניתן להעביר מסר מיידי בין החלקיקים הקוונטיים בניסוי האפ”ר. מכאן הגיעו למסקנה שמכניקת הקוונטים הלא ליניארית מפרה את הסיבתיות ויתכן טלפון אפ”ר (תקשורת בין צופים לא לוקאליים). אולם ג’וזף פולכינסקי הראה שהאפקטים העל-אוריים הם טעות שנגזרת מהניסוח המסוים של וינברג ואם נכליל את הניסוח של וינברג הטעות תעלם. מיד הופיעו חוקרים שהדגימו: לא רק שהקושי של הופעת ההשפעות העל-אוריות ייחודי לניסוח של וינברג, אלא המתכון של פולכינסקי לתורות קוונטיות לא ליניאריות קוזאליות שלא מכילות השפעה על אורית נופל.

אם כך, האם תורת היחסות מופרת? הויכוח נמשך בספרות. לפי הקונסנזוס הסטנדרטי במכניקת הקוונטים – אנחנו נותרנו עם המסתורין הקוונטי, קשר קוונטי מסתורי בין חלקיקים. זהו המחיר שמשלמים כדי לא להפר את עקרונות תורת היחסות הפרטית. אם ננסה להסביר קורלציות קוונטיות לא לוקאליות על ידי השפעה היפותטית לוקאלית וריאליסטית, השפעה כזו תצטרך לנוע במהירות על אורית ולא סתם, אלא במהירות אינסופית.

בניגוד להסברים הלוקאליים הריאליסטיים שמאלצים אותנו להשתמש בתמסורת על-אורית, הפירוש הסטנדרטי המקובל במכניקת הקוונטים האורתודוקסית אומר, ששום מידע לא מועבר בין קצה אחד של ניסוי אפ”ר לקצה השני; כלומר, אין למעשה קונפליקט בין תורת הקוונטים לתורת היחסות וזאת בגלל שצופים שהם מופרדים מרחבית (אי לוקאליות) בניסוי מסוג האפ”ר לא יכולים להשתמש בבחירות המדידה שלהם ובתוצאות המדידה שלהם כדי לתקשר זה עם זה וכדי להעביר מידע זה לזה. מכניקת הקוונטים אף מרחיקה לכת באומרה שהריאליסטים מחשיבים את מדידות הקיטוב לקיטוב של פוטונים ממשיים. אולם, ניתן לחשוב על ניסוי אפ”ר כעל קורלציה סטטיסטית בין מכשירי המדידה בלבד מבלי לדבר כלל על פוטונים, אלא רק על מדידות ונתונים… ג

אחד המחקרים האחרונים בתחום מסוף אוקטובר